A Variational Approach to a Problem Arising in Capillarity Theory

Gheorghe Moroşanu*

Faculty of Mathematics, ''A. I. Caza'' University, Bd. Copou 11, 6600 Iaşi, Romania

Submitted by Firdaus E. Udwadia

Received June 16, 1995

This paper studies a model for capillarity in circular tubes. The main result of this paper states the existence of a unique C^1 solution for this model. This solution is a minimum point of some functional Ψ.

1. INTRODUCTION

Consider the problem

\[(tG(x'(t)))' = tx(t), \quad 0 \leq t \leq 1, \quad (1)\]

\[x'(1) = \beta, \quad (2)\]

where β is a positive constant and G satisfies the following assumptions:

(a) $G: [0, \beta] \rightarrow \mathbb{R}$ is continuous, strictly increasing, and $G(0) = 0$.

Note that in the particular case $G(u) = \mu u(1 + u^2)^{-1/2}$, $\mu > 0$, problem (1), (2) represents a model for capillarity in circular tubes [1, 4]. See also [2, pp. 289–293].

Problem (1), (2) was solved by A. Corduneanu and G. Moroşanu [1, 4] under more restrictive assumptions by using a direct method. Our aim here is to derive the same result by a variational approach.

*E-mail address: gmoro@dragon.uaic.ro.

442

0022-247X/97 $25.00
Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.
As we shall see later, it is convenient to extend G outside the interval $[0, \beta]$ by linear functions. For example, let $G_1 : \mathbb{R} \to \mathbb{R}$ be defined by

$$G_1(u) = \begin{cases}
 u, & \text{for } u < 0, \\
 G(u), & \text{for } 0 \leq u \leq \beta, \\
 u - \beta + G(\beta), & \text{for } u > \beta.
\end{cases}$$

Obviously $G_1 \in C(\mathbb{R})$ and G_1 is strictly increasing. We shall prove that the equation

$$(tG_1(x'(t)))' = t\alpha(t), \quad 0 \leq t \leq 1$$

with boundary condition (2) has a unique solution $x \in C^4[0, 1]$ with $0 \leq x'(t) \leq \beta$ for $0 \leq t \leq 1$ and hence x is also a solution of problem (1), (2).

Denoting $j(u) := \int_0^u G_1(s) \, ds$ we can expect to obtain the solution of (3), (2) in $C^4[0, 1]$ as a minimum point of the functional

$$\Psi(v) = \int_0^1 \left(j(v'(t)) + v^2(t)/2 \right) \, dt - G(\beta)v(1).$$

2. AUXILIARY RESULTS

Before stating and proving the main result we give two auxiliary results.

Lemma 1. If assumptions (A) are satisfied then for each $\beta > 0$, problem (3), (2) has at most one solution in $C^4[0, 1]$.

Proof. Let $x_1, x_2 \in C^4[0, 1]$ be solutions of (3), (2). We have

$$\int_0^1 (x_1 - x_2)(tG_1(x_1' - x_2')) \, dt = \int_0^1 t(x_1 - x_2)^2 \, dt.$$

Integrating by parts in the left hand side and using the monotonicity of G_1 and the fact that $x_1(1) = x_2(1) = \beta$ we can easily see that $x_1 = x_2$ in $[0, 1]$. Q.E.D.

Lemma 2. If assumptions (A) are satisfied, and $x \in C^4[0, 1]$ is a solution of Eq. (3), then the following implications hold:

$$x(0) = 0 \implies \text{either } x'(t) \geq 0 \text{ for } 0 \leq t \leq 1 \text{ or } x'(t) \leq 0 \text{ for } 0 \leq t \leq 1;$$

$$x(0) > 0 \implies x'(t) > 0 \quad \text{for } 0 < t \leq 1;$$

$$x(0) < 0 \implies x'(t) < 0 \quad \text{for } 0 < t \leq 1.$$
Proof. Multiplying \(x(t) \) by Eq. (3) and then integrating on \([0, t]\) we get

\[
\alpha(t)G_2(x'(t)) = \int_0^t s\{x^2(s) + x'(s)G_1(x'(s))\} \, ds, \quad 0 \leq t \leq 1. \tag{8}
\]

Therefore, taking into account the properties of \(G_1 \), we can see that

\[
\{t \in (0, 1); x(t) = 0\} = \{t \in (0, 1); x'(t) = 0\}
\]

and this set is either an empty set or an interval of the form \((0, \delta]\). Using this remark and Eq. (8) we can easily derive the conclusions (5), (6), and (7).

Q.E.D.

3. THE MAIN RESULT

Theorem 1. If assumptions (A) are satisfied then for each \(\beta > 0 \) problem (1), (2) has a unique solution in \(C^1[0, 1] \).

Proof. As uniqueness is already proved (see Lemma 1 which is also valid for problem (1), (2)) it remains to prove existence. To do that we shall use the functional \(\Psi \) defined by (4). Consider the space

\[
H = \{v = v(t); t^{1/2}v, t^{1/2}v' \in L^2(0, 1)\}.
\]

This is a Hilbert space with scalar product

\[
\langle v_1, v_2 \rangle_H = \int_0^1 t(v_1v_2 + v_1'v_2') \, dt.
\]

Now, since

\[
r^2/3 - C \leq j(r) \leq r^2 + C, \quad r \in \mathbb{R}, \tag{9}
\]

where \(C \) is a positive constant, we can see that \(\Psi \) is everywhere defined on \(H \) and moreover it is coercive,

\[
\Psi(v) \geq C_1\|v\|_H^2 - C_2, \quad v \in H, \tag{10}
\]

where \(C_1, C_2 \) are positive constants. Indeed for \(v \in H \) and \(\delta \) fixed in \((0, 1)\) we have

\[
|v(1)| \leq C_3(\|v\|_{L^2(\delta, 1)}^2 + \|v'\|_{L^2(\delta, 1)}^2)^{1/2}
\]

and so

\[
|v(1)| \leq C_4(\|t^{1/2}v\|_{L^2(\delta, 1)}^2 + \|t^{1/2}v'\|_{L^2(\delta, 1)}^2)^{1/2} \leq C_4\|v\|_H.
\]
This implies (10) by a straightforward computation. Since Ψ is convex, continuous, and coercive it has a minimum point $x \in H$ (see, e.g., [3, p. 34]). Therefore we have (Euler–Lagrange equation)

$$(tG_1(x'(t)))' = tx(t), \quad \text{for a.e. } t \in (0, 1).$$

(11)

For any $\delta \in (0, 1)$ we can deduce from (11) and $x \in H$ that the function $f(t) := tG_1(x'(t))$ belongs to $C^1[\delta, 1]$ and so $x' \in C[\delta, 1]$ because $G_1^{-1} \in C(\mathbb{R})$. Hence $x \in C^1(0, 1)$. As x is a minimum point of ψ we also have

$$G_1(x'(1)) = G_1(\beta).$$

(12)

Hence x verifies (2) and

$$tG_1(x'(t)) = G(\beta) - \int_t^1 sx(s) \, ds, \quad 0 < t \leq 1.$$

(13)

From (13) we deduce that there exists

$$\lim_{t \to 0^+} tG_1(x'(t)) = l \in \mathbb{R}.$$

By the definition of G_1 it follows that

$$l = \lim_{t \to 0^+} tx'(t).$$

In fact $l = 0$ because otherwise

$$t^2(x'(t))^2 \geq l^2/2 > 0$$

in some interval $(0, \delta)$ and this contradicts the fact that $x \in H$. Now, it is easy to deduce from (11) that x satisfies

$$tG_1(x'(t)) = \int_0^t sx(s) \, ds, \quad 0 \leq t \leq 1.$$

(14)

In the next step we shall prove that $x \in C^1[0, 1]$. We have

$$\left| \int_0^t sx(s) \, ds \right| \leq 2^{-1/2} t \left(\int_0^t s^2(x(s)) \, ds \right)^{1/2}, \quad 0 \leq t \leq 1.$$

Hence, by (14) we can see that $G_1(x'(t)) \to 0$ as $t \to 0^+$ and this implies $x'(t) \to 0$ as $t \to 0^+$. Therefore $x \in C^1[0, 1]$, $x'(0) = 0$ and x verifies (3) for all $t \in [0, 1]$.

The final step is to prove that x is a solution for Eq. (1). To this end we first note that $\beta > 0$ implies (see Lemma 2)

$$x'(t) \geq 0 \quad \text{and} \quad x(t) \geq 0 \text{ for } 0 \leq t \leq 1.$$

(15)
Moreover, using (15) we can easily see that the function $t \mapsto (1/t) \int_0^t sx(s) \, ds$ is nondecreasing in $[0, 1]$. Since
\[
x'(t) = G_1^{-1} \left(\frac{1}{t} \int_0^t sx(s) \, ds \right)
\]
and G_1^{-1} is nondecreasing it follows that x' is also nondecreasing in $[0, 1]$. Therefore $0 = x'(0) \leq x'(t) \leq x'(1) = \beta$ for $0 \leq t \leq 1$ which implies that x is a solution of Eq. (1).

Q.E.D.

4. FINAL COMMENTS

We have incidentally proved some properties of the solution of problem (1), (2) with physical significance (see [2–4] for the description of the model arising in capillarity theory): $x'(0) = 0$, (15), and the fact that x' is nondecreasing (that is, x is a convex function).

In order to point out some other properties of solutions let us assume in what follows that $G \in C(\mathbb{R})$, $G(0) = 0$, and G is strictly increasing. By the above reasoning we can see that for any $\beta \in \mathbb{R}$ problem (1), (2) has a unique solution, say $x = x(t, \beta)$.

Now, if x_1, x_2 are solutions of Eq. (1) we have
\[
t[x_1(t) - x_2(t)] [G(x_1(t)) - G(x_2(t))] \\
= \int_0^t s \left[(x_1 - x_2)^2 + (x_1' - x_2') [G(x_1') - G(x_2')] \right] \, ds, \quad 0 \leq t \leq 1.
\]

(17)

This implies that
\[
\{ t \in (0, 1) \, ; \, x_1(t) = x_2(t) \} = \{ t \in (0, 1) \, ; \, x_1'(t) = x_2'(t) \}
\]

(18)

and this set is either a void set or an interval $(0, \delta)$. Therefore, we have the monotonicity property
\[
\beta_1 < \beta_2 \Rightarrow x'(t, \beta_1) \leq x'(t, \beta_2) \quad \text{for} \, 0 \leq t \leq 1.
\]

(19)

Using (17), (18), and (19) we can easily deduce that
\[
\beta_1 < \beta_2 \Rightarrow x(t, \beta_1) \leq x(t, \beta_2) \quad \text{for} \, 0 \leq t \leq 1.
\]

(20)

As an immediate consequence of (19) and (20) we can show the continuity of the solution of β. More precisely, using Arzelà’s Criterion and Eq. (1) we can see that $\beta_n \to \beta$ implies $x(\cdot, \beta_n) \to x(\cdot, \beta)$ in $C^1[0, 1]$.
On the other hand, if \(x_1, x_2 \) are solutions of Eq. (1) with \(x_1(0) < x_2(0) \) then \(x_1(t) < x_2(t) \) for \(0 < t < 1 \) and \(x'_1(t) < x'_2(t) \) for \(0 < t < 1 \) (see (18)).

Let us also mention that in the case in which we have uniqueness for the Cauchy problem associated to Eq. (1) (according to (16), this happens if \(G^{-1}_1 \) is locally Lipschitz), then making again use of (18) we can see that \(\beta_1 < \beta_2 \Rightarrow x'(t, \beta_1) < x'(t, \beta_2) \) for \(0 < t < 1 \) and \(x(t, \beta_1) < x(t, \beta_2) \) for \(0 < t < 1 \).

In particular, for \(\beta > 0 \), \(x'(t, \beta) > 0 \) in \((0, 1] \) and \(x(t, \beta) > 0 \) in \([0, 1] \). Moreover, in this case, it follows by (16) that \(x' \) is strictly increasing (i.e., \(x \) is strictly convex).

However, in general, that uniqueness property does not hold as the following simple counterexample shows. Let \(G \in C(\mathbb{R}) \) be a strictly increasing function such that \(G(u) = u^2/45 \) for \(0 \leq u \leq 3 \). Then Eq. (1) with the initial condition \(x(0) = 0 \) has at least two solutions: \(x_1(t) = 0 \) and \(x_2(t) = t^3 \).

ACKNOWLEDGMENT

The author is indebted to Professor V. Barbu for suggesting the variational approach and for interesting conversations concerning the subject of this paper.

REFERENCES