AN INTEGRAL-DIFFERENTIAL EQUATION FROM THE
CAPILLARITY THEORY

Gheorghe Muresanu and Adria Corduneanu

LIBERTAS MATHEMATICA

The equation we are going to study in this Note appears on the base of capillarity of
continuous grain media.

Denoting by \(\theta_1, \theta_2, \theta_3 \) the Cartesian coordinates in the sense and choosing that the
base of grains \(H \) has its axis coincides with \((Ox_2) \), we shall consider that the surfaces \(S \)
of the liquid in a capillarity surface whose parametric equations are

\[x_1 = r \cos \varphi, \quad x_2 = r \sin \varphi, \quad x_3 = z \]

where \(r \) and \(\varphi \) are the usual cylindrical coordinates. The surface \(S \) has a polar form of the
local equilibrium equation of Laplace [1, p. 131]

\[\sigma = \frac{1}{2} \left(\kappa_1 \partial^2 \frac{1}{r} \right) + \frac{1}{2} \left(\kappa_2 \partial^2 \frac{1}{r} \right)
\]

tomus xiv

Redigit: C. Corduneanu

1994

Arlington, Texas
AN INTEGRO-DIFFERENTIAL EQUATION FROM THE CAPILLARITY THEORY

Gheorghe MOROȘANU and Adrian CORDUNEANU

The equation we are going to study in this Note appears in the case of capillarity in circular glass tubes.

Denoting by \((x_1, x_2, x_3)\) the Cartesian coordinates in the space and assuming that the tube of radius \(R > 0\) has its axis collinear with \((Ox_3)\), we shall consider that the surface \((S)\) of the liquid is a rotation surface whose parametric equations are

\[
(1) \quad x_1 = r \cos \varphi, \quad x_2 = r \sin \varphi, \quad x_3 = x_3(r) \quad \text{with} \quad 0 \leq r \leq R, \quad 0 \leq \varphi \leq 2\pi
\]

where \(r\) and \(\varphi\) are the usual cylindrical coordinates. The surface \((S)\) has a stable form if the local equilibrium equation of Laplace [1, p.111]

\[
(2) \quad \rho g x_3(r) = \sigma \left(\frac{1}{R_1^2} + \frac{1}{R_2^2} \right), \quad 0 \leq r \leq R
\]

is satisfied at every its point. We use the notation \(\rho\) for the density of the liquid, \(g\) for the gravitational acceleration, \(R_1\) and \(R_2\) for the principal radii of curvature. The constant \(\sigma > 0\) is the interfacial tension liquid - air. Using the classical notations in the Differential Geometry for the coefficients of the two fundamental forms of a surface, we have in our case

\[
(3) \quad E = 1 + (x_3'(r))^2, \quad F = 0, \quad G = r^2
\]

and, respectively,

\[
(4) \quad L = \frac{r x_3''(r)}{\sqrt{EG - F^2}}, \quad M = 0, \quad N = \frac{r^2 x_3'(r)}{\sqrt{EG - F^2}}.
\]

Since the principal curvatures \(k_1\) and \(k_2\) satisfy

\[
(5) \quad k_1 + k_2 = \frac{EN + GL - 2FM}{EG - F^2},
\]

we obtain after some elementary computations...
\[
\frac{1}{R_1} + \frac{1}{R_2} = k_1 + k_2 = \frac{1}{r} \left[\frac{rx_3'(r)}{\sqrt{1 + (x_3'(r))^2}} \right].
\]

From (2), integrating over the interval \([0, r]\), we obtain the integro-differential equation

\[
\sigma \frac{rx_3'(r)}{\sqrt{1 + (x_3'(r))^2}} = \rho g \int_0^r sx_3(s) ds, \quad 0 \leq r \leq R
\]

to which we associate the boundary condition \(x_3'(R) = \beta > o\). We remark that every solution also satisfies the condition \(x_3'(0) = o\). Making the substitution \(r = Rt\) (\(t\) = independent variable) and putting \(x_3(Rt) = Rx(t)\), we arrive to the problem

\[
\frac{\mu}{\sqrt{1 + (x'(t))^2}} = \frac{tx'(t)}{\int_0^t x(s) ds}, \quad 0 \leq t \leq 1; \quad x'(1) = \beta
\]

where \(\mu = \sigma / \rho g R^2 > o\) is a constant. We shall consider the problem (8) in a more general case, writing it under the form

\[
t G(x'(t)) = \int_0^t x(s) ds, \quad 0 \leq t \leq 1; \quad x'(1) = \beta > o
\]

and imposing conditions to the function \(G = G(u)\), which are satisfied in the particular case when \(G(u) = \mu u (I + u^2)^{-\frac{1}{2}}\), described by (8). We also consider the initial value problem

\[
t G(x'(t)) = \int_0^t x(s) ds, \quad 0 \leq t \leq 1; \quad x(0) = x_o.
\]

Our aim is to prove that, for every \(\beta > o\), there exists \(x_o = x_o(\beta) > o\), such that the corresponding solution of (10) satisfies (9), too.

Using the notation \(x' = y\), assuming that \(y\) is continuous and taking into account that

\[
x(t) = x_o + \int_0^t y(s) ds, \quad 0 \leq t \leq 1
\]

we shall obtain for the function \(y = y(t)\), from (10), the equation

\[
2t G(y(t)) = x_o t^2 + 2 \int_0^t s y(\tau) d\tau ds, \quad 0 \leq t \leq 1
\]

or its equivalent form

\[
2t G(y(t)) = x_o t^2 + \int_0^t (t^2 - s^2) y(s) ds, \quad 0 \leq t \leq 1.
\]
If $x = x(t)$ is a continuously differentiable solution of (10), then $y = x'$ satisfies equation (13). Conversely, if $y = y(t)$ is a continuous solution of (13), then $x = x(t)$ given by (11) satisfies equation (10). In what follows, we assume that the function G satisfies the hypotheses

(H) $G = G(u)$ is defined for $u \geq 0$, $G = G(u)$ is continuously differentiable for $u \geq 0$, $G(0) = 0$, $G'(u) > 0$ for $u \geq 0$, $G'(u)$ is nonincreasing for $u \geq 0$ and $G(u) \to \mu$ $(\mu < \infty)$ as $u \to \infty$.

Let us denote, for $x_o > 0$,

(14) $K(x_o) = \{ y \in C_{[0,1]} : y(t) \geq 0, \int_0^t G(y(s)) ds \geq x_o t^2 + \int_0^t (t^2 - s^2) y(s) ds, 0 \leq t \leq 1 \}$

Proposition 1. The set of all points $x_o > 0$ for which $K(x_o) \neq \emptyset$ is an open interval $I = (0,A)$ with $0 < A < 2\mu$.

Proof. Let us first prove that, for every $M > 0$, we can choose a sufficiently small $x_o > 0$ such that $K(x_o)$ contains a certain function $y = y(t)$ with $0 \leq y(t) \leq M$ for $0 \leq t \leq 1$. Indeed, let us denote $a = G'(M)$ and let us consider the integral equation

(15) $2aty(t) = x_o t^2 + \int_0^t (t^2 - s^2) y(s) ds, 0 \leq t \leq 1$

Putting

(16) $u(t) = \int_0^t y(s) ds, 0 \leq t \leq 1$

it follows that $y = u'$. We obtain from (15) the differential equation

(17) $(atu'(t))' = x_o t + tu(t)$

and since $u(0) = 0$, $u'(0) = 0$ we search for $u = u(t)$ a series expansion of the form

(18) $u(t) = c_2 t^2 + c_3 t^3 + \cdots + c_n t^n + \cdots$

From (17) and (18), we obtain

(19) $u(t) = x_o \sum_{n=1}^{\infty} \frac{t^{2n}}{2^{2n}(n!)^2 a^n} = x_o I_0 \left(\frac{t}{\sqrt{a}} \right) - x_o$

where I_0 stands for the modified Bessel function of the first kind of order zero [2, p.181], [3, p.93], given by
(20) \[I_o(t) = \sum_{n=0}^{\infty} \frac{1}{(n!)^2} \left(\frac{t}{2} \right)^{2n}, \quad -\infty < t < \infty \]

For the solution \(y = y(t) \) of (15), we find

(21) \[y(t) = u'(t) = \frac{x_o}{\sqrt{a}} I'_o \left(\frac{t}{\sqrt{a}} \right), \quad 0 \leq t \leq 1 \]

Now, it is clear that for a sufficiently small \(x_o > 0 \) we have \(0 \leq y(t) \leq M \) if \(0 \leq t \leq 1 \).
Fixing now a point \(x_o \) with this property, we have for the corresponding solution \(y = y(t) \) of (15) that

(22) \[G(y(t)) = G(o) + G' (\theta(t)) y(t) \quad \text{with} \quad 0 \leq \theta \leq y(t) \]

hence, taking into account that \(G(o) = o \) and \(G'(u) \) is nonincreasing for \(u \geq o \), it follows that

(23) \[G(y(t)) \geq G'(y(t)) y(t) \geq G'(M) y(t) = a y(t), \quad 0 \leq t \leq 1 \]

We derive from (15) and (23) that \(y \in K(x_o) \), hence \(K(x_o) \neq \emptyset \). Since \(G < \mu \), it follows from definition (14) that \(K(x_o) = \emptyset \) for \(x_o \geq 2 \mu \). On another hand, \(o < x_o < x_o \) implies \(K(x_o) \subset K(x_o) \), hence \(K(x_o) \neq \emptyset \) implies \(K(x_o) \neq \emptyset \). Consequently, the set of points \(x_o > 0 \) with \(K(x_o) \neq \emptyset \) is an interval with the endpoints \(o \) and \(A, A < 2 \mu \). It remains to show that this interval (denote it by \(I \)) is open. To this end, it suffices to prove that \(x_o \in I \) implies \(K(x_o + \varepsilon) \neq \emptyset \) for a sufficiently small \(\varepsilon > 0 \). Fixing \(y \in K(x_o) \) and \(M > o \), we denote

(24) \[M = M + \sup \{ y(t) : 0 \leq t \leq 1 \}, \quad a_t = G'(M) \]

If \(\alpha = \alpha(t) \) is the solution of the equation

(25) \[2 a_t t \alpha(t) = \varepsilon t^2 + \int_0^t (t^2 - s^2) \alpha(s) \, ds, \quad 0 \leq t \leq 1 \]

we know that, for a sufficiently small \(\varepsilon > 0 \), it follows \(o \leq \alpha(t) \leq M \) for \(0 \leq t \leq 1 \). We deduce from

(26) \[G(y(t) + o(t)) = G(y(t)) + G' (\theta(t)) o(t) \]

where \(y(t) \leq \theta(t) \leq y(t) + o(t) \) for \(0 \leq t \leq 1 \), that

(27) \[G(y(t) + o(t)) \geq G(y(t)) + G'(M) \alpha(t) = G(y(t)) + a_t \alpha(t) \]

also holds for \(t \in [o, 1] \). It follows from (27), (25) and (14) that \(y + \alpha \in K(x_o + \varepsilon) \), that is, \(K(x_o + \varepsilon) \neq \emptyset \). This concludes the proof.

Remark 1. Eq. (21) implies that from
(28) \[o < x_o \leq B = \sup \left\{ \frac{M \sqrt{G'(M)}}{I_o'(1/\sqrt{G'(M)})} : M > o \right\} \]

it follows that the corresponding solution \(y = y(t) \) of (15) belongs to \(K(x_o) \), hence \(K(x_o) \neq \emptyset \). In other words, we have \((o,B) \subset I \).

Theorem 1. For \(x_o \in I \), the integral equation (13) has a unique solution in \(C_{[o,I]} \).

Proof. Let \(y \) be a fixed element of \(K(x_o) \). We denote

\[K(x_o, y) = \{ y \in K(x_o) : y(t) \leq y(t) \text{ for } o \leq t \leq I \} \]

Obviously \(y \in K(x_o, y) \), hence \(K(x_o, y) \neq \emptyset \). Moreover, \(K(x_o, y) \) is a closed subset of \(C_{[o,I]} \). We define an operator \(T : K(x_o, y) \rightarrow C_{[o,I]} \) by

\[(Ty)(t) = G^{-1} \left(\frac{x_0 t}{2} + \int_o^t \left(t^2 - s^2 \right) y(s) \, ds \right), \quad o < t \leq I \quad ; \quad (Ty)(o) = o \]

where \(G^{-1} \) is the inverse function of \(G \), with \(\text{dom}(G^{-1}) = [o,\mu) \). We shall prove that

\[T(K(x_o, y)) \subset K(x_o, y) \]

Indeed, if \(y \) is an element of \(K(x_o, y) \), we have for \(t \in (o,I) \)

\[G(y(t)) \geq \frac{x_0 t}{2} + \int_o^t \left(t^2 - s^2 \right) y(s) \, ds \]

Applying the function \(G^{-1} \), we obtain \(y(t) \geq (Ty)(t) \) for \(t \in (o,I) \), but this is also true for \(t = o \). Hence, we have \(o \leq (Ty)(t) \leq y \) for \(t \in [o,I] \). Denoting \(Ty = z \), we obtain from (30), for \(t \in [o,I] \), that

\[2tG(z(t)) \geq x_0 t^2 + \int_o^t \left(t^2 - s^2 \right) y(s) \, ds \geq x_0 t^2 + \int_o^t \left(t^2 - s^2 \right) z(s) \, ds \]

Thus \(z = Ty \) satisfies both the conditions required by definition (29), hence the inclusion (31) is true.

If \(b > o \) is \(\sup \{ y(t) : o \leq t \leq I \} \), then for every \(y \in K(x_o, y) \), we have

\[o \leq \frac{x_0 t}{2} + \int_o^t \left(t^2 - s^2 \right) y(s) \, ds \leq G(b) < \mu, \quad o < t \leq I \]

Denoting by \(L = L(b) = 1/G'(b) \) the Lipschitz constant of the function \(G^{-1} \) with respect to the interval \([o,G(b)]\), we can write

\[|(Ty)(t) - (Tz)(t)| \leq \frac{L}{2t} \int_o^t \left(t^2 - s^2 \right) |y(s) - z(s)| \, ds, \quad o < t \leq I \]
for every pair of functions y and z of $K(x_o, \bar{y})$. Using the notation $\| \cdot \|$ for the norm in the space $C_{[o, l]}$, we obtain from the preceding inequality

$$
| (Ty)(t) - (Tz)(t) | \leq L \| y - z \| \frac{t^2}{3}, \quad 0 \leq t \leq l.
$$

By iterating this (upper bounding) inequality we find

$$
| (T^n y)(t) - (T^n z)(t) | \leq \frac{L^n \| y - z \|}{3^2 \cdot 5^2 \cdot \cdots \cdot (2n-1)^2} \frac{t^{2n}}{2n+1}, \quad 0 \leq t \leq l
$$

true for every $n \geq 2$. This fact shows us that the sequence of successive approximations \{ $T^n y_o$ \}_{n \geq o} \text{, where } y_o \text{ is an arbitrary element of } K(x_o, \bar{y}) \text{, is uniformly convergent on } [o, l] \text{ to a function } y \in K(x_o, \bar{y}) \text{, which is a fixed point of operator } T \text{ and a solution of equation (13).} \text{ We remark that this sequence is nonincreasing and tends to the solution } y = y(t) \text{ of (13) and we have } y(t) \leq \bar{y}(t) \text{ on } [o, l]. \text{ The unicity of the solution may be proved by a standard argument : if } z = z(t) \text{ is another solution of Eq.(13) in } C_{[o, l]} \text{ and we have } o \leq z(t) \leq b, \text{ for } o \leq t \leq l \text{ and if we denote } b_2 = \max \{ b_1, b \} \text{ and } L_2 = 1/G'(b_2) = \text{ the Lipschitz constant of the function } G^{-1} \text{ on the interval } [o, G(b_2)], \text{ we obtain}

$$
| y(t) - z(t) | \leq L_2 \| y - z \| \frac{t^2}{3}, \quad 0 \leq t \leq l
$$

Iterating this inequality, we deduce an (upper bounding) inequality similar to those given in (37). Hence $z(t) = y(t)$ and this completes the proof.

Remark 2. Since the element \bar{y} was taken (in the above proof) arbitrarily in $K(x_o)$, we have for the solution y of (13)

$$
y(t) \leq \bar{y}(t) \text{ for } o \leq t \leq l, \quad \forall \bar{y} \in K(x_o).
$$

Remark 3. The following equivalence is true:

$$
x_o > o, \quad K(x_o) \neq \emptyset \iff \text{ equation (13) has a unique solution in } C_{[o, l]}.
$$

For $x_o \in I$, we denote by $y(t,x_o)$ the corresponding solution of equation (13).

Proposition 2. Assume that $x_o, \bar{x}_o \in I$. Then

(i) $y(t,x_o) > o$ for $0 < t \leq l$,

(ii) $y'(t,x_o) > o$ for $0 \leq t \leq l$,

(iii) $x_o < \bar{x}_o$ implies $y(t,x_o) < y(t,\bar{x}_o)$ for $0 \leq t \leq l$,

(iv) the mapping $x_o \mapsto y(t,x_o)$ is locally Lipschitzian from I to $C_{[o, l]}$.

Proof. (i) It follows from Theorem 1 that $y(t,x_o) \geq o$ for $0 < t \leq l$. We remark that $y(o,x_o) = o$. Assume that there exists $t_1 > o$ such that $y(t_1,x_o) = o$. From the equation
we arrive to a contradiction since the last term is positive. Thus, \(y(t, x_o) > 0 \) for \(o < t \leq 1 \). (ii) Starting from

\[
y(t, x_o) = G^{-1}\left(\frac{x_o t}{2} + \frac{1}{2t} \int_0^t (t^2 - s^2) y(s, x_o) \, ds\right), \quad o < t \leq 1
\]

we easily deduce the existence and the continuity, for \(t \in (o, 1] \), of the derivative \(y'(t, x_o) = y_i'(t, x_o) \). From Eq. (13), we obtain

\[
G'(y(t, x_o))y'(t, x_o) = \frac{x_o}{2} + \int_0^t y(s, x_o) \, ds - \frac{1}{2t^2} \int_0^t (t^2 - s^2) y(s, x_o) \, ds
\]

also for \(t \in (o, 1] \). If we denote

\[
g(t) = 2t^2 \int_0^t y(s, x_o) \, ds - \int_0^t (t^2 - s^2) y(s, x_o) \, ds, \quad o \leq t \leq 1
\]

we have \(g(t) > 0 \) for \(t \in (o, 1] \), because \(g(o) = o \) and \(g'(t) > 0 \) for \(t \in (o, 1] \). Using (43) and (44), we can now write

\[
y'(t, x_o) > \frac{x_o}{2G'(y(t, x_o))} \geq \frac{x_o}{2G'(o)} > 0, \quad o < t \leq 1
\]

Making \(t \rightarrow o_+ \) in (43), we have

\[
y'(o, x_o) = \lim_{t \rightarrow o_+} y'(t, x_o) = \frac{x_o}{2G'(o)}.
\]

(iii) Denoting \(u(t) = y(t, x_o) - y(t, x_o) \), we have \(u(o) = o \) and \(u'(o) = (x_o - x_o)/2G'(o) > 0 \). This implies \(u(t) > 0 \) for \(t \) sufficiently small. Assume that \(u(t) > 0 \) on \((o, t_i)\) and \(u(t_i) = 0 \). We obtain from (13)

\[
o = (x_o - x_o)t_i^2 + \int_0^t (t_i^2 - s^2) u(s) \, ds,
\]

what is impossible. Thus \(u(t) > 0 \) on \((o, 1]\), that is, \(y(t, x_o) < y(t, x_o) \) on \((o, 1]\).

(iv) Let \([c, d]\) be a compact interval enclosed in \(I \). For every \(x_o \in [c, d] \) and \(t \in [o, 1] \) we have \(o \leq y(t, x_o) \leq y(1, d) \). Then we get from (42)

\[
o \leq \frac{x_o t}{2} + \frac{1}{2t} \int_0^t (t^2 - s^2) y(s, x_o) \, ds \leq G(y(1, d)) < \mu, \quad o < t \leq 1
\]

Taking \(x_o, \overline{x}_o \in [c, d] \), keeping for \(u = u(t) \) the same meaning as above, denoting by \(L' \) the Lipschitz constant of \(G^{-1} \) on the interval \([o, G(y(1,d))]) \) and making use of (42), we obtain
\(u(t) \leq \frac{L^*}{2} \left(\left| \bar{x}_o - x_o \right| + \int_0^t u(s) \, ds \right) , \quad 0 \leq t \leq 1 \).

The Gronwall-Bellman inequality implies
\(|y(t, \bar{x}_o) - y(t, x_o)| \leq \frac{L^*}{2} \left| \bar{x}_o - x_o \right| e^{\frac{L^*}{2}}, \quad 0 \leq t \leq 1 \)
what concludes the proof.

Remark 4. The function \(y = y(t, x_o) \) is continuous for \(t \in [0,1], x_o \in I \). Moreover, it may be proved the existence of the partial derivative \(\frac{\partial y}{\partial x_o}(t, x_o) = \eta(t, x_o) \), which satisfies the equation
\(G'(y(t, x_o)) \eta(t, x_o) = \frac{t}{2} + \frac{L^*}{2t} \int_0^t (t^2 - s^2) \eta(s, x_o) \, ds , \quad 0 < t \leq 1 \).

Remark 5. For a fixed \(t \in (0,1] \), the image of \(I \) by the function \(y = y(t, x_o) \) is an interval enclosed in \((0, \infty) \) with its left endpoint \(= 0 \). In what follows, our aim is to prove that the image of \(I \) by \(y = y(1, x_o) \) is the whole halfaxis \((0, \infty) \).

We again consider the main problem of this paper, namely: to find a function \(x = x(t) \) satisfying the conditions
\(t G(x'(t)) = \int_0^t s x(s) \, ds , \quad 0 \leq t \leq 1 ; \quad x'(1) = \beta > 0 \).

Theorem 2. Under the hypothesis (H), for every \(\beta > 0 \), the problem (52) has a unique solution in \(C^1_{[0,1]} \).

Proof. We recall that, with notation \(y = x' \), the initial value problem (10) may be reduced to the integral equation (13). For solving the problem (52), it must be proved the existence of \(x_o \in I \) such that the corresponding solution of (13) satisfies condition \(y(1, x_o) = \beta \). We know that the set \(\{ y(1, x_o) : x_o \in I \} \) is an interval with its left endpoint \(= 0 \). To complete the proof, it suffices to prove that \(\{ y(1, x_o) : x_o \in I \} = (0, \infty) \). Indeed, let us suppose that there exists a constant \(C > 0 \) such that \(y(t, x_o) \leq C \) for every \(x_o \in I \). Then we have \(0 \leq y(t, x_o) \leq C \) for \(t \in [0,1] \) and \(x_o \in I \). In other words, the set \(\{ y(t, x_o) : x_o \in I \} \) of all the solutions of (13) is uniformly bounded on the interval \([0,1]\). On another hand, we deduce from Proposition 2 and from (43) that
\(o < y'(t, x_o) \leq \frac{A + C}{G'(C)} , \quad 0 \leq t \leq 1 , \quad x_o \in I \),
that is, the set of the derivatives is also uniformly bounded on \([0,1]\). The Arzelà-Ascoli theorem
implies that the function set \(\{ y(t, x_0^n) : x_0 \in I \} \) is relatively compact in \(C_{[o, I]} \). Now, let \((x_0^n)_{n \geq 1} \) be an increasing sequence, convergent to \(A \). The sequence of functions \((y(t, x_0^n)) \) is increasing and pointwise convergent on \([o, I]\) to a function \(y = \bar{y}(t) \), with \(o \leq \bar{y}(t) \leq C \) on \([o, I]\). But this convergence is uniform and it therefore follows that \(y = \bar{y}(t) \) is continuous on \([o, I]\). Making \(n \to \infty \) in the equation

\[
2tG(y(t, x_0^n)) = x_0^n t^2 + \int_0^t (t^2 - s^2) y(s, x_0^n) \, ds , \quad o \leq t \leq I , \quad n \geq 1
\]

we obtain

\[
2tG(\bar{y}(t)) = At^2 + \int_0^t (t^2 - s^2) \bar{y}(s) \, ds , \quad o \leq t \leq I ,
\]

what implies \(K(A) \neq \emptyset \), that is, \(A \in I \). This contradiction shows that the assumption that \(y(l, x_0) \leq C \) for every \(x_0 \in I \) is false. We conclude this proof with the remark that the mapping \(x_0 \to y(l, x_0) \) is an increasing bijection from \(I = (o, A) \) to \((o, \infty)\).

Remark 6. In connection with the problem (52), let us still notice that its solution \(x = x(t) \) also satisfies the additional condition \(x'(o) = o \) (i.e., \(y(o, x_0) = o \)) which has — by the way — a physical meaning.

Acknowledgements. The authors are indebted to Prof. V.BARBU for helpful discussions, and to Prof. T.POPESCU who proposed us the subject of this paper and established the functional equation (8). In particular, Prof. V. BARBU suggested another method leading to the reduction of problem (52) to a problem of Variation Calculus.

REFERENCES
