Contents

Preface .. v

Plenary Lectures

Numerical Problems in General Relativity ... 3
 D. N. Arnold

A Survey of a Class of Algebraic Multilevel Iteration Methods for Positive
Definite Symmetric Matrices .. 16
 O. Axelsson and P. S. Vassilevski

Finite Element Trace Theorems for Parameter Dependent Sobolev Spaces 31
 S. V. Nepomnyaschikh

A Domain Decomposition Algorithm ... 42
 J.-L. Lions and O. Pironneau

High Order Generalized FEM for Lattice Materials 58
 C. Schwab and A.-M. Matache

 D. Talay

Minisymposia

Adaptivity and error control

Reliability of A posteriori Estimate Techniques in Finite Element Schemes ... 90
 S. A. Funken

Discontinuous Galerkin Methods for Convection-Diffusion Problems
with Arbitrary Péclet Number .. 100
 R. Becker and P. Hansbo

Hierarchical Error Estimator for Eddy Current Computation 110
 R. Beck, R. Hiptmair and B. Wohlmuth
Adaptive Numerics for the Simulation of Magneto-Plasmadynamic Rocket Thrusters .. 121
 U. Iben, G. Warnecke, J. Heiermann and M. Auweter-Kurtz

An Approach to Adaptivity in Optimization Problems 131
 H. Kapp

Adaptive Multilevel Solutions of Nonlinear Parabolic PDE Systems . 141
 J. Lang

A Posteriori Error Analysis for Control Problem Governed by a Nonlinear Elliptic Equation 146
 W. Liu and N. Yan

Error Indicators for Adaptive Refinement of Singularly Perturbed Convection-Diffusion Problems 154
 M. Nikolova

A posteriori Error Estimates for Boundary Value Problems with Obstacles ... 162
 H. M. Buss and S. I. Repin

Adaptive Solutions of Compressible Navier–Stokes Equations in the Low Mach Number Limit Through Weighted A Posteriori Error Estimate ... 171
 M. Sabanca, G. Brenner, F. Durst and U. Tremel

Application of FEM-BEM Couplings in Continuum Mechanics

FEM–BEM Coupling for 3D Exterior Magnetic Field Problems 180
 M. Kuhn and O. Steinbach

Simulation of Piezoelectric Surface Acoustic Wave Devices Using a Coupling of Integral Equations, Finite Elements and Fourier Modes . 188
 T. Abboud, J.-C. Nédélec and J. Ribbe

Computational Electromagnetics

The Retarded Potential Method for Computational Electro-Magnetics ... 198
 T. Abboud and T. Sayah

Eddy Current Calculation Including Moving Conductors Using the Finite Integration Method 206
 M. Clemens, Th. Weiland and M. Wilke
Numerical Investigation of a Boundary Penalization Method for Maxwell Equations .. 214
 M. Costabel, M. Dauge and D. Martin

Financial Mathematics

Multiphase Flows and Multifields Modelling

On the Direct Numerical Simulation of a Fluidization Phenomenon by a Distributed Lagrange Multiplier Based Fictitious Domain Method . 226
 T.-W. Pan, R. Glowinski and D. D. Joseph

Numerical Simulation of Mass Transfer and Chemical Reactions in Gas-Liquid Flows .. 237
 D. Kuzmin

Direct Simulation of 2D Sedimentation 245
 B. Maury

Finite Element Based Methods for Interfacial Flow Simulations 251
 A.-K. Tornberg and B. Engquist

Numerical Methods and Modelling in Atmosphere-Ocean Science

 R. Bermejo and J. Conde

Asymptotic Analysis of a Dry Atmosphere 262
 N. Botta, R. Klein and A. Almgren

A Model for Two Coupled Turbulent Fluids 272
 C. Bernardi, T. Chacón Rebollo, R. Lewandowski and F. Murat

Modeling Geophysical Flows via Large Scale Statistical Theories 274
 M. J. Grote and A. J. Majda

Numerical Methods in Computer Graphics and Visualization

Numerical Modelling/Simulation of Telecommunication Systems

Fuzzy Matrix Approach for Multirate Sampling in Switching Systems 280
 T. Barbu
Theoretical and Computational Difficulties of Modern Regression
Data Analysis ... 288
Y. V. Chebrakov

Delay Optimization for Buffered Traffic of Switched Sources 296
O. Gomzikov

An Inverse Problem for the Telegraph System 303
V.-M. Hokkanen, G. Moroşanu and P. Neittaanmäki

Least Squares Estimation of Switched Mean Traffic Patterns in ATM Networks ... 308
A. Murgu

Kalman Filtering Modelling for Traffic Control in Intelligent Networks ... 322
A. Murgu and P. Lehtinen

Indirect Error Control for Adaptive Filtering 333
I. V. Semoushin and J. V. Tsyganova

Some New Approaches to Generating and Certification of Robust Estimators in Nonlinear Regression 341
Y. V. Chebrakov and V. V. Shmagin

Information Theoretic Decomposition of Exponential-Type Closed Queueing Networks with Finite Capacity and Multiple Servers 349
V. D. Tsiantos and D. D. Kouvatsos

Modern Software Concepts for PDEs

Preprocessing Costs of Cache Based Multigrid 362
C. C. Douglas, J. Hu and M. Iskandarani

Stiff Multi-Parameter Systems, including Least-Squares Methods

Implementation of Least-Squares Finite Element Method for Solving the Generalized Stokes Problem 372
I. O. Arushanian and G. M. Kobelkov

The Energy Method for Symmetrized Convection-Diffusion Problems in Multiply Connected Domains 381
V. V. Denissenko

On Compact Approximations for the PDEs with Variable Coefficients 389
V. P. Il’in
Numerical Experiments with Nonlinear Least Squares FE Method using a Family of Analytical Solutions for the 2D Navier–Stokes Equations .. 397
I. E. Kaporin

Contributed Papers

An Object Oriented Flow Solver for the CRS4 Virtual Vascular Project .. 407
G. Abdoulaev, A. Varone and G. Zanetti

Numerical Study of Least-Squares and Stabilized FEM’s for Convection-Diffusion Problems 416
V. Akimov and P. Tarvainen

The Mortar Wavelet Method .. 424
S. Bertoluzza and V. Perrier

Cost-Effective Boundary Integral Method for Three-Dimensional Scattering Problems 432
A. Bespalov

Explanation of a Phenomenon Witnessed in Pre-Processed GMRES .. 440
J. H. Brandts

An A Posteriori Error Estimate for the Stokes Problem in a Polygonal Domain Using Hood–Taylor Elements .. 448
P. Burda

Degenerate Matrix Method for Solving Some Stiff Differential Equations .. 456
T. Cirulis and O. Lietuvietis

Local Estimates of Finite Elements for Degenerate Parabolic Equations .. 462
C. Ebmeyer

Iterative Solutions of Multimodels for Incompressible Flows .. 470
L. Fatone, P. Gervasio and A. Quarteroni

Odyssee and Parallelism: Extension and Validation .. 478
C. Faure, P. Dutto and S. Fidanova

Numerical Analysis of Problems with Nonlinear Newton Boundary Conditions .. 486
M. Feistauer, K. Najzar, P. Sváček and V. Sobotíková
Diffraction of Non-Plane Waves at Plane Gratings 494
T. Abboud and P. Ferreira

Finite Element Approximation of Maxwell’s Eigenproblem 502
D. Boffi and L. Gastaldi

A Numerical Study of the Consolidation Process of Flocculated Suspensions Using a Two Fluid Model .. 510
K. Gustavsson and J. Oppelstrup

The Monotone Error Rule for Parameter Choice in Regularization Methods ... 518
U. Hämarik and U. Tautenhahn

Splitting Techniques for the Navier–Stokes Equations 526
H. Haschke and W. Heinrichs

Newton’s Method for Tracking Type Control of the Instationary Navier–Stokes Equations .. 534
M. Hinze and K. Kunisch

Solving Hyperbolic PDEs Using Conservative Subdivision Schemes 542
M. Holmström

A New Approach to the SVD-like Approximation Problem 548
I. Ibragimov

The Numerical Study of Heating and Burning Process in Glass Fabric Manufacture .. 556
H. Kalis and O. Lietuvietis

Multigrid Methods with Extended Subspaces for Reduced Systems 564
T. Kärkkäinen and J. Toivanen

Modified FE Discretizations of Incompressible Flow Problems and their Relationship to Stabilized Methods .. 571
P. Knobloch and L. Tobiska

Axisymmetrical Radiative Heat Transfer Simulation by Ray Tracing Method ... 579
S. Kochuguev, D. Ofengeim and A. Zhmakin

On Discrete Maximum Principle for Tetrahedral Elements Satisfying a Weakened Acute Type Condition ... 587
S. Korotov, P. Neittaanmäki and M. Krížek

An Advanced Local-Global Stepsize Control for Multistep Methods 593
G. Yu. Kulikov and S. K. Shindin
Mesh Approximation and Iterative Solution of the Continuous
Casting Problem .. 601
E. Laitinen, J. Pieskä and A. Lapin

Iterative Solution for Two Classes of Mesh Variational Inequalities . 617
A. Lapin

Numerical Efficiency of Turbulent Flow Computations with Multigrid
Methods .. 625
T. Lehnhäuser and M. Schäfer

High-Resolution Finite Volume Evolution Galerkin Schemes for
Multidimensional Hyperbolic Conservation Laws 633
M. Lukáčová-Medviďová, K. W. Morton and G. Warnecke

Determination of Regularization Parameter in Monotone Active Set
Method for Image Restoration 641
T. Kärkkäinen and K. Majava

A Nonoverlapping Domain Decomposition Method for the
Nonstationary Navier–Stokes Problem 649
L. Müller and G. Lube

On Spd-Preconditioned Iterative Methods Applied to a Stabilized
Galerkin Method .. 657
S. Müller and G. Lube

Mathematical Model of Unsteady Unsaturated Porous Media Fluid
Flow .. 665
J. Maryška and J. Mužák

Solution of Weakly Singular Integral Equations with Discontinuous
Coefficients by Piecewise Polynomial Approximation 673
K. Hakk and A. Pedas

An Exponential Rate of Convergence of the Finite Element Method
for the Dirichlet Problem with Singularity of a Solution 681
A. Yu. Bespalov and V. A. Rukavishnikov

Stabilization of the Stokes Problem in Stream Function-Vorticity
Formulation .. 690
F. Dubois, M. Salaün and S. Salmon

Development of a Black-Box Solver for Nonlinear Systems of Elliptic
and Parabolic PDE’s ... 698
W. Schönauer and T. Adolph
Adaptive Finite Element Method of Lines for Nonlinear Parabolic Equations .. 707
K. Segeth

High Order Approximation Schemes ... 715
A. V. Shapeev and V. P. Shapeev

Symmetry-Preserving Discretizations for Lagrangian Gas Dynamics 725
L. G. Margolin, M. J. Shashkov and M. A. Taylor

A Fictitious Domain Method with Distributed Lagrange Multipliers 733

Micromagnetic Simulations Using a Combined BDF/GMRES Method .. 743
V. D. Tsiantis, J. J. Miles and B. K. Middleton

An Interface Preconditioner for the Mortar Element Method 753
Yu. Kuznetsov and Yu. Vassilevski

Wavelet Based Acoustic Classification of Moving Objects 762
A. Z. Averbuch and V. A. Zheludev

Discussion on Convergence Conditions for Restarted GMRES 770
J. Zitko
AN INVERSE PROBLEM FOR THE TELEGRAPH SYSTEM

VELI-MATTI HOKKANEN
University of Jyväskylä, Department of Mathematics, P.O. Box 35, FIN-40351
Jyväskylä, Finland
E-mail: vmho@cc.jyu.fi

GHEORGHE MOROŞANU
University “Al. I. Cuza”, Faculty of Mathematics, Bulevardul Copou 11, RO-6600
Iaşi, Romania
E-mail: gmoro@uaic.ro

PEKKA NEITTAANMÄKI
University of Jyväskylä, Department of Mathematical Information Technology,
P.O. Box 35, FIN-40351 Jyväskylä, Finland
E-mail: pn@jane.math.jyu.fi

An inverse problem arising from the nonlinear telegraph system (1)–(4) is formulated and investigated as an optimization problem. This leads us to study by D’Alembert formulæ whether the solution of (1)–(4) is continuous and differentiable with respect to the optimized parameter.

1 Introduction

Consider the following boundary value problem (BVP):

\[
\frac{\partial u}{\partial t} (t, x) + \frac{\partial v}{\partial x} (t, x) + Ru(t, x) \equiv f_1(t, x), \quad 0 < x < 1, \quad t > 0,
\]

\[
\frac{\partial v}{\partial t} (t, x) + \frac{\partial u}{\partial x} (t, x) + Gv(t, x) \equiv f_2(t, x), \quad 0 < x < 1, \quad t > 0,
\]

\[
ru(t, 0) + v(t, 0) \equiv 0, \quad u(t, 1) \in \beta v(t, 1), \quad t > 0,
\]

\[
u(0, x) = u_0(x), \quad v(0, x) = v_0(x), \quad 0 < x < 1,
\]

where \(r, \beta, R, G \subseteq \mathbb{R} \times \mathbb{R} \) are maximal monotone operators, \(u_0, v_0 : [0, 1] \rightarrow \mathbb{R} \), and \(f_1, f_2 : [0, \infty] \times [0, 1] \rightarrow \mathbb{R} \). This BVP models electrical circuits with a nonlinear resistance at \(x = 1 \) [3]. Moreover, this BVP is essentially similar to a boundary value problem, modelling the electromagnetic radiation of an antenna.

We are interested in an inverse (or identification) problem where one should find \(r \) when \(\beta, R, G, f_1, f_2, u_0, \) and \(v_0 \) are given and BVP has a
solution. However, as we shall see below, BVP has solution under quite general assumptions for any maximal monotone \(r \). Thus our identification problem is ill-posed, and hence we study the following optimization problem (P), where we are looking \(r \) such that the exact solution \((u_r, v_r) \) of BVP is close enough to \((\hat{u}, \hat{v}) \), the measured or desired solution of BVP.

Let \(T > 0, K \) be a set of some maximal monotone operators in \(\mathbb{R} \) and let \(X \) be a Banach space of some functions \([0, T] \times [0, 1] \mapsto \mathbb{R} \). The set \(K \) and the space \(X \) remain to be clarified later.

(P) Let \((\hat{u}, \hat{v}) \in X \). Find \(r \in K \) such that \(r \) minimizes the function \(J \),

\[
J : K \mapsto \mathbb{R}, \quad J(r) = \frac{1}{2} \| (u_r, v_r) - (\hat{u}, \hat{v}) \|^2_X,
\]

where \((u_r, v_r)\) is the solution of BVP corresponding to \(r \). For the existence and the regularity of the solution for BVP see [2,1].

2 The case of unperturbed D’Alembertian

Let \(T > 0, R = G = 0 \) and \(f_1, f_2 : [0, T] \times [0, 1] \mapsto \mathbb{R} \). We extend \(f_1 \) and \(f_2 \) to be defined on \([0, T] \times \mathbb{R} \) by

\[
f_i(t, x) = f_i(t, 2 - x), \quad \text{if} \quad 1 < x \leq 2,
\]

\[
f_i(t, x) = f_i(t, -x), \quad \text{if} \quad -1 \leq x < 0,
\]

\(i = 1, 2, \) and so on. The general solution of (1)–(2) is given by the d’Alembert formulae (8)–(11); for each \(t \in [0, T] \) and \(x \in [0, 1] \),

\[
u(t, x) = \frac{1}{2} \left(\phi(x - t) - \psi(x + t) + h_1(t, x) - h_2(t, x) \right), \quad \text{(9)}
\]

where

\[
h_1(t, x) = \frac{1}{2} \int_{x-t}^{x} (f_1 + f_2)(t - x + s, s) \, ds, \quad \text{(10)}
\]

\[
h_2(t, x) = \frac{1}{2} \int_{x}^{x+t} (f_1 - f_2)(t + x - s, s) \, ds, \quad \text{(11)}
\]

and the functions \(\phi : [-T, 1] \mapsto \mathbb{R} \) and \(\psi : [0, 1 + T] \mapsto \mathbb{R} \) are determined by the initial and by the boundary conditions. Indeed, by (3),

\[
\phi(x) = u_0(x) + v_0(x), \quad \psi(x) = u_0(x) - v_0(x), \quad \text{if} \quad 0 \leq x \leq 1. \quad \text{(12)}
\]
Without loss of generality we may assume that \(T \leq 1 \). Then (4) is equivalent to (13)–(14); for \(0 \leq t \leq T \),

\[
(I + r)\frac{1}{2} (\phi(-t) + \psi(t) + h_1(t,0) + h_2(t,0)) \ni \psi(t) + h_2(t,0),
\]

\[
(I + \beta)\frac{1}{2} (-\psi(1+t) + \phi(1-t) + h_1(t,1) - h_2(t,1)) \ni \phi(1-t) + h_1(t,1).
\]

Since \(r \) and \(\beta \) are maximal monotone operators in \(\mathbb{R} \), the functions \(\phi: [-T, 1] \ni \mathbb{R} \) and \(\psi: [0, T + 1] \ni \mathbb{R} \) are uniquely determined.

If \(f_1 \) and \(f_2 \) are smooth enough, (6)–(14) give the classical solution of BVP. However, (6)–(14) make sense under weaker assumptions. Thus \((u, v)\), given by (6)–(14), is called the generalized solution of BVP whenever the integrals in (10)–(11) are well-defined with respect to the Lebesgue measure.

The proofs of the following three lemmas are straightforward; for the proof of Lemma 2 the reader may see [2].

Lemma 1 Let \(p \in [1, \infty] \), \(u_0, v_0 \in L^p(0, 1) \) and \(f_1, f_2 \in C([0, T]; L^p(0, 1)) \). Then BVP has a unique generalized solution \((u, v) \in C([0, T]; L^p(0, 1))^2\). Moreover, \((u, v)\) does not depend on how \(f_1 \) and \(f_2 \) are extended in \(C([0, T]; L^p_{\text{loc}}(\mathbb{R}))\).

Lemma 2 Let \(u_0, v_0 \in L^2(0, 1) \) and \(f_1, f_2 \in L^1(0, T; L^2(0, 1))\). Then BVP has a unique weak solution.

Lemma 3 Assume the conditions of the first Lemma with \(p = 2 \). Then BVP has both the generalized and the weak solution and they coincide.

2.1 \(L^2 \)-Valued Solutions

Let \(X = C([0, T]; L^2(0, 1))^2\). Moreover, let \(Y = L^2(\mathbb{R}, 1/(1 + x^4))\), a weighted Hilbert space, and its subspace

\[
U_M = \{ y \in C(\mathbb{R}) \mid y' \text{ exists and } 0 \leq y' \leq 1 \text{ a.e. in } \mathbb{R}, \ |y(0)| \leq M \},
\]

with \(M > 0 \). Consider the mapping \(P: \gamma \mapsto (u_\gamma, v_\gamma) \), where \(r = \gamma^{-1} - I \) and \((u_\gamma, v_\gamma)\) is the generalized solution of BVP. By (13)–(14) and by Ascoli’s theorem we can prove that the mapping \(P: U_M \mapsto X \) is continuous and \(U_M \) is compact in \(Y \), for each \(M > 0 \). Consider the sets

\[
K_M = \{ r \text{ is maximal monotone in } \mathbb{R} \mid |(I + r)^{-1}| \leq M \},
\]

for \(M > 0 \). Clearly, there is a bijection between \(U_M \) and \(K_M \). So, if \((\bar{u}, \bar{v}) \in X\), then by Weierstraß’s theorem there exists \(r_M \in K_M \), minimizing \(J \) in \(K_M \), for any \(M > 0 \).
2.2 Continuous Solutions

Let \(Q_T =]0, T[\times]0, 1[\) and \(X = C(Q_T)^2 \). Thus we choose a stronger norm in (1). In this case the solution of BVP must belong to \(C(Q_T)^2 \). But that requires \(u_0, v_0 \in C[0, 1] \) and the zeroth order compatibility conditions [1]:

\[
r u_0(0) + v_0(0) \equiv 0, \quad u_0(1) \in \beta(v_0(1)).
\]

(17)

Hence \(u_0 \) and \(v_0 \) depend on \(r \), and we are guided to define

\[
U = \{ y \in C(\mathbb{R}) \mid 0 \leq y' \leq 1 \text{ a.e. in } \mathbb{R}, \text{ and } u_0(0) = y(u_0(0) - v_0(0)) \}.
\]

(18)

Again we can easily prove that \(U \) is compact in \(Y \) and \(P : U \mapsto X \) is continuous. Thus there is a maximal monotone operator \(r \subset \mathbb{R} \times \mathbb{R} \) minimizing \(J \) under the constraint (17).

2.3 Continuously Differentiable Solutions

If we choose the norm in (1) to be even stronger, say \(\| \cdot \|_{C^1(Q_T)^2} \), then the things get more complicated: we have to require \(u_0, v_0 \in C^1[0, 1] \), \(f_1 \) and \(f_2 \) to be smoother, and the zeroth and the first order compatibility conditions [1], that is,

\[
(\tilde{r}'(u_0(0) - v_0(0)) - 1)(f_1(0, 0) - v_0'(0)) = \\
= \tilde{r}'(u_0(0) - v_0(0))(f_2(0, 0) - u_0'(0)),
\]

(19)

\[
(\tilde{\beta}'(u_0(1) + v_0(1)) - 1)(f_1(0, 1) - v_0'(1)) = \\
= \tilde{\beta}'(u_0(1) + v_0(1))(f_2(0, 1) - u_0'(1)),
\]

(20)

where \(\tilde{r} = (I + r)^{-1} \) and \(\tilde{\beta} = (I + \beta)^{-1} \).

2.4 Finding the Optimal Parameter

The continuity reasoning above establishes only the existence of the optimal \(r \). In order to approximate the optimal parameter \(r \) by the gradient method or to calculate it directly from \(J'(r) = 0 \), we should be able to calculate \(J'(r) \). This leads us to study whether the solution of BVP is differentiable with respect to \(r \).
3 The case of perturbed D’Alembertian

Let $G \neq 0$ or $R \neq 0$. In this case the general solution of (S) can not be expressed by d’Alembert type formulae. However, the problem whether J is continuous and differentiable, reduces to the question of the continuity and differentiability of the fixed point for the mapping $(\xi, \eta) \mapsto (u, v)$, where (u, v) is the solution of (3)–(4) and (21)–(22),

$$\frac{\partial u}{\partial t}(t, x) + \frac{\partial v}{\partial x}(t, x) \in f_1(t, x) - R\xi(t, x), \quad 0 < x < 1, \quad t > 0, \quad (21)$$

$$\frac{\partial v}{\partial t}(t, x) + \frac{\partial u}{\partial x}(t, x) \in f_2(t, x) - G\eta(t, x), \quad 0 < x < 1, \quad t > 0. \quad (22)$$

References

