ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF DIFFERENTIAL EQUATIONS ASSOCIATED TO MONOTONE OPERATORS

GHEORGHE MOROŞANU
Seminarul Matematic, Universitatea Iaşi, România

Key words: Monotone sets, Cauchy problem, asymptotic behaviour.

(Received 9 January 1979)

1. INTRODUCTION

Throughout this paper H is a real Hilbert space with scalar product (\cdot, \cdot) and norm $|\cdot|$. Consider the initial value problem:

$$\frac{du}{dt}(t) + Au(t) = f(t), \quad t > 0,$$ \hspace{1cm} (1.1)

$$u(0) = u_0,$$ \hspace{1cm} (1.2)

where:

$$A \text{ is a maximal monotone set in } H \times H,$$ \hspace{1cm} (1.3)

$$u_0 \in D(A).$$ \hspace{1cm} (1.4)

We will impose one of the following two conditions on f:

$$f \in L^1(0, \infty; H)$$ \hspace{1cm} (1.5)

$$f \in L^2(0, \infty; H).$$ \hspace{1cm} (1.6)

We suppose familiarity with the basic notions, notations and results concerning the monotone sets and Cauchy problem (1.1), (1.2) (for background information see [1, 2]). Our objective is to study the asymptotic behaviour, as $t \to \infty$, of the solution of (1.1), (1.2). So we generalize several results concerning the special case $f \equiv 0$ stated by Baillon and Brézis [3], Bruck [4] and Pazy [5]. We extend our results to some second order differential equations. The last section contains adequate examples. For more details and other aspects of this subject we refer the reader to [6–13].

2. WEAK CONVERGENCE OF SOLUTIONS

Lemma 2.1. Assume (1.3), (1.4), (1.5) hold and let u be the unique integral solution of (1.1), (1.2). Then, $u(t)$ is bounded on $[0, \infty[$ if and only if $A^{-1}0$ is nonempty.

Proof. First, we suppose that $u(t)$ is bounded on $[0, \infty[$. Since $u(t)$ is integral solution of (1.1),

873
(1.2) we have:
\[2^{-1}|u(t) - v|^2 - 2^{-1}|u_0 - v|^2 \leq \int_0^t (f(s) - w, u(s) - v) \, ds, \]
for every \(t \geq 0 \), \([v, w] \in A\). \hfill (2.1)

Dividing by \(t > 0 \), we obtain:
\[
(2t^{-1}|u(t) - v|^2 - (2t^{-1}|u_0 - v|^2 + t^{-1}\int_0^t (f(s), v - u(s)) \, ds \leq (w, v - \sigma(t)),
\]
for every \(t > 0 \), \([v, w] \in A\), \hfill (2.2)

where
\[
\sigma(t) = t^{-1} \int_0^t u(s) \, ds
\]
is bounded on \([0, \infty[\), therefore there exists a sequence \(t_n \to \infty \) such that \(\sigma(t_n) \) converges weakly to an element \(p \in H \). If we take \(t = t_n \) in (2.2) and pass to limit it follows:
\[
0 \leq (w, v - p), \quad \text{for every} \quad [v, w] \in A.
\]

The last inequality and maximality of \(A \) implies that \([p, 0] \in A\). Conversely, if we suppose that \(A^{-1}0 \) is nonempty we can take \(v \in A^{-1}0 \), \(w = 0 \) in (2.1) and we deduce by a variant of Gronwall’s lemma (see [2], p. 157) that \(u(t) \) is bounded on \([0, \infty[\). Q.E.D.

We note that for \(f = 0 \) this lemma is due to Crandall and Pazy [7]. The next result generalizes a theorem stated by Baillon and Brézis [3]. For its proof we use a similar technique.

Theorem 2.1. Assume (1.3), (1.4), (1.5) hold and let \(u \) be the solution of (1.1), (1.2). If \(F = A^{-1}0 \) is nonempty, then
\[
\sigma(t) = t^{-1} \int_0^t u(s) \, ds
\]
converges weakly to an element \(p \in F \) and there exists
\[
\lim_{t \to \infty} ||\text{Proj}_F u(t) - p|| = 0.
\]

Proof. From Lemma 2.1 it follows that \(u(t) \) and \(\sigma(t) \) are bounded on \([0, \infty[\). Since \(u \) is an integral solution of (1.1), (1.2) we have:
\[
2^{-1}|u(t) - x|^2 - 2^{-1}|u_0 - x|^2 \leq \int_s^t |f(\tau)| \, |u(\tau) - x| \, d\tau,
\]
for every \(x \in F \), \(0 \leq s \leq t < \infty \).

By the cited variant of Gronwall’s lemma this implies the following inequality:
\[
|u(t) - x| - |u(s) - x| \leq \int_s^t |f(\tau)| \, d\tau,
\]
for every \(x \in F \), \(0 \leq s \leq t < \infty \).

Hence, for every \(x \in F \), the function \(t \to |u(t) - x| - \int_s^t |f(\tau)| \, d\tau \) is nonincreasing on \([0, \infty[\). Taking into account that this function is at the same time bounded on \([0, \infty[\), it follows that it has a finite limit, as \(t \to \infty \), for every \(x \in F \). Finally, since \(f \in L^2(0, \infty; H) \) we conclude that there exists
\[
\lim_{t \to \infty} |u(t) - x| = \rho(x), \quad \text{for every} \quad x \in F.
\]

We set:
\[
\nu(t) = \text{Proj}_F u(t).
\]

We shall prove that the function
\[
t \to |u(t) - \nu(t)| - \int_0^t |f(s)| \, ds
\]
is nonincreasing on \([0, \infty[\) and therefore \(|u(t) - \nu(t)| \) has limit as \(t \to \infty \). For fixed \(t \) we denote \(y(h) = u(t + h), \quad h \geq 0 \).

Then, \(y \) satisfies the following problem:
\[
dy \in \frac{d}{dh} y(h) + Ay(h) \ni f(t + h), \quad \text{a.e.} \quad h > 0; \quad y(0) = u(t).
\]

By the same argument above we obtain that the function
\[
h \to |y(h) - \nu(t)| - \int_0^h |f(h + s)| \, ds
\]
is nonincreasing and hence
\[
|u(t + h) - \nu(t)| - \int_0^{t + h} |f(s)| \, ds \leq |u(t) - \nu(t)|, \quad t, h \geq 0.
\]

This implies:
\[
|u(t + h) - \nu(t + h)| - \int_0^{t + h} |f(s)| \, ds \leq |u(t + h) - u(t)| - \int_0^t |f(s)| \, ds
\]
\[
- \int_0^{t + h} |f(s)| \, ds \leq |u(t) - \nu(t)| - \int_0^t |f(s)| \, ds,
\]
for every \(t \geq 0 \), \(h \geq 0 \).

Next, the procedure used in [3] is applicable with minor changes.

Now, we shall give a generalization of the principal result in [5, Th. 2.1].

Theorem 2.2. Assume (1.3), (1.4), (1.5) hold and let \(u \) be the solution of (1.1), (1.2) on \([0, \infty[\). Then, there exists the weak limit of \(u(t) \), as \(t \to \infty \) if and only if \(A^{-1}0 \) is nonempty and \(\omega_u \subset A^{-1}0 \), where \(\omega_u \) is the set of the weak cluster points of \([u(t)], t \geq 0 \).

Proof. “Only if” part. Suppose that \(u(t) \) converges weakly to an element \(p \in H \), as \(t \to \infty \). This implies that \(\sigma(t) \) converges weakly to \(p \). From (2.2) it follows that \(p \in F = A^{-1}0 \).
"If" part. Since F is nonempty, according to Lemma 2.1, ω_u is nonempty too. Let p, q be arbitrary in $\omega_u \subset F$. We have:
\[
|u(t) - p|^2 = |u(t) - q|^2 + 2(u(t) - q, q - p) + |q - p|^2, \quad t \geq 0
\]
and from (2.3) we obtain
\[
\rho^2(p) - \rho^2(q) = |q - p|^2.
\]
The same argument works with p and q reversed, i.e.,
\[
\rho^2(q) - \rho^2(p) = |p - q|^2.
\]
We conclude that $p = q$, hence ω_u contains only one element. The argument for "If" part was suggested by [13].

Q.E.D.

Theorem 2.3. Assume (1.4), (1.5) hold, $A = \partial \phi(\varphi: H \to \varnothing)$ is lower-semicontinuous and proper convex function, A^{-1} is nonempty and let u be the solution of (1.1), (1.2). Then, $u(t)$ converges weakly, as $t \to \infty$, to a point of $A^{-1} 0$.

If in particular $f = 0$, then this theorem is due to Bruck [4].

Proof. Taking into account Theorem 2.3 it remains to prove that $\omega_u \subset F = A^{-1} 0$. Let $\{t_n\} \subset [0, \infty]$ be an arbitrary sequence such that $t_n \to \infty$ and define the following functions:
\[
f_n(t) = \begin{cases} f(t) & \text{a.e. } t \in [0, 2^{-1} t_n] \\ 0 & \text{for every } t \in [2^{-1} t_n, \infty]. \end{cases}
\]

Consider the following problems:
\[
\frac{du}{dt}(t) + Au(t) = f_n(t), \quad t > 0 \tag{2.4}
\]
\[
u(n)(0) = u_0. \tag{2.5}
\]
Obviously, $u_n(t) = u(t), 0 \leq t \leq \frac{1}{2} t_n$ where u_0 is the solution of (2.4), (2.5). We set:
\[
y_n(t) = u(t + 2^{-1} t_n). \tag{2.6}
\]
Then, $y_n(t)$ verifies the following problem:
\[
\frac{d^+ y_n}{dt}(t) + A^0 y_n(t) = 0, \quad \text{for every } t > 0 \tag{2.7}
\]
\[
y_n(0) = u(2^{-1} t_n) \in D(\phi). \tag{2.8}
\]
We remember that $D(\phi) = \{x \in H; \phi(x) < \infty\}$ and $D(\phi) = D(A); A^0$ is the minimal section of A. It is also well known that if $u_n \in D(\phi)$ and $f \equiv 0$ on $[0, \infty[$, then (1.1), (1.2) has a unique strong solution v on $[0, \infty]$ such that $v(t) \in D(A)$ for every $t > 0$, $v(t)$ is everywhere differentiable from the right for $t > 0$ and satisfies:
\[
\frac{d^+ v}{dt}(t) + A^0 v(t) = 0, \quad \text{for every } t > 0; \tag{2.9}
\]
the following estimation is also satisfied:
\[
\frac{d^+ v}{dt}(t) \leq |A^0 x| + t^{-1} |x - u_0|, \tag{2.10}
\]
for every $t > 0$, and $x \in D(A)$.

Since F is nonempty $u(t)$ is bounded on $[0, \infty[$ (cf. Lemma 2.1). From (2.6) and (2.7) one obtains:
\[
|y_n(t) - x_n| \leq |u(2^{-1} t_n) - x_n|, \quad t > 0, \quad x_n \in F. \tag{2.11}
\]
By (2.8) it follows:
\[
\frac{d^+ y_n}{dt}(t) \leq t^{-1} |x_n - u(2^{-1} t_n)|, \quad t > 0, \quad x_n \in F. \tag{2.12}
\]
Hence, $\{t_n\}$ has a subsequence $\{t_{n_k}\}$ such that
\[
u(n_k(t_{n_k}) = y_n(2^{-1} t_{n_k}) \tag{2.13}
\]
converges weakly, as $k \to \infty$, to an element $p \in H$. By means of (2.10) and (2.6) one gets that $A^0 u_{n_k}(t_{n_k})$ converges strongly to 0, as $k \to \infty$. Since A is demiclosed it follows that $\{p, 0\} \in A$ and therefore $p \in F$. On the other hand, u and u_n being the integral solutions of (1.1), (1.2) and respectively (2.4), (2.5) one gets:
\[
|u(t) - u_n(t)| \leq \int_{2^{-1} t_n}^t |f(s)| ds, \quad t > 2^{-1} t_n. \tag{2.14}
\]
Thus
\[
\lim_{k \to \infty} |u_{n_k}(t_{n_k}) - u_{n_k}(t_{n_k})| = 0. \tag{2.15}
\]
Therefore u_{n_k} converges weakly to $p \in F$. We conclude that $\omega_u \subset F$, as claimed.

Remark 2.1. Assume (1.3), (1.4), (1.5) hold and $F = \varnothing$. Then, it is clear by Lemma 2.1 that
\[
\lim_{t \to \infty} |u(t)| = \infty. \tag{2.16}
\]
For $A = \partial \phi$ and $f \equiv 0$, Pazy [5] proved that if $F = \varnothing$ or equivalently $0 \notin R(A)$, but $0 \in R(A)$, then
\[
\lim_{t \to \infty} |u(t)| = \infty. \tag{2.17}
\]
This fact remains true even if f is an arbitrary function in $L(0, \infty; H)$. More precisely, we have:

Theorem 2.4. Assume (1.4), (1.5) hold, $A = \partial \phi, \phi(0) \in R(A)$ and let u be the solution of (1.1), (1.2). Then, (2.11) is satisfied.

Proof. Suppose that (2.11) is false. Therefore, there exists a sequence $t_n \to \infty$ such that $u(2^{-1} t_n)$ is bounded.

We again consider the approximating problems (2.6), (2.7) and using (2.9) and the following
estimate (cf. (2.8))
\[\left| \frac{d^2 v}{dt^2} (t) \right| \leq |A^0 x| + t^{-1} |x - u(t)| \leq 0, \quad t > 0, \quad x \in D(A) \]

one obtains that \(F = A^{-1} 0 \) is nonempty. Indeed, the arguments above and the assumption that \(0 \in \mathcal{R}(\bar{A}) \) implies that \(\{t_n\} \) has a subsequence \(\{t_{n_k}\} \) such that
\[
y_{n_k} (t_{n_k}) \text{ converges weakly to an element } p \in H, \quad \frac{d^2 v_n}{dt^2} (t_{n_k}) \text{ converges strongly to 0, as } k \to \infty.
\]

Using (2.6) one obtains \(\{ p, 0 \} \in A \), i.e. \(F \neq \emptyset \), which is a contradiction.

Next, we shall investigate the case \(A \) is a square root. Let \(B \) be a maximal monotone set in \(H \times H \) such that \(B^{-1} 0 \) is nonempty. Consider the following second order problem on half axis:
\[
\begin{align*}
\frac{d^2 v}{dt^2} (t) & \in B v(t), \quad t > 0 \quad (2.12) \\
v(0) & = x, \quad x \in D(B) \quad (2.13) \\
sup_{t \geq 0} |v(t)| & < \infty. \quad (2.14)
\end{align*}
\]

It is proved in [1] that this problem has a unique solution \(v \) satisfying
\[
v \in W^{2, 2} (0, \infty; H) \quad \text{and} \quad \frac{d v}{dt} \in L^2 (0, \infty; H).
\]

Let \(A = B^{1/2} \) be the square root of \(B \) in the sense of definition given by Barbu [1, p. 329]. Then, \(v \) satisfies the following equation
\[
\frac{dv}{dt} (t) + A^0 v(t) = 0, \quad \forall t > 0. \quad (2.15)
\]

Lemma 2.2. \(A^{-1} 0 = B^{-1} 0 \), where \(A = B^{1/2} \).

Proof. First, let us take \(p \in B^{-1} 0 \). It follows that \(v(t) = p, t \geq 0 \) is a solution of (2.12), (2.13), (2.14), where \(x = p \). But, by the definition of the square root \(v \) is at the same time a solution of (2.15), that is,
\[
A^0 p = 0.
\]

Hence
\[
B^{-1} 0 \subset A^{-1} 0.
\]

Similarly, it follows
\[
A^{-1} 0 \subset B^{-1} 0.
\]

Theorem 2.5. Let \(B \) be a maximal monotone set in \(H \times H \) and suppose that \(B^{-1} 0 \neq \emptyset \). Let \(u \)

be the solution of (1.1), (1.2), where \(A = B^{1/2} \) and (1.4), (1.5) hold. Then, \(u(t) \) converges weakly, as \(t \to \infty \), to an element \(p \in B^{-1} 0 \).

Proof. We recall that
\[
D(B) \subset D(A) \subset D(\bar{A}),
\]

therefore
\[
D(A) = D(\bar{B}).
\]

We also recall that the solution of (2.15), (2.13) satisfies
\[
\left| \frac{dv}{dt} (t) \right| \leq t^{-1} |x - y|, \quad \text{for } t > 0, \quad y \in B^{-1} 0.
\]

By Lemma 2.2 \(A^{-1} 0 \) is nonempty and it coincides to \(B^{-1} 0 \). Consequently, using the same procedure as in the case \(A = \partial \varphi \) the theorem follows.

Remark 2.2. Making \(f = 0 \) in Theorem 2.5, we obtain the weak convergence (to a point of \(B^{-1} 0 \)) of the solution of second order problem (2.12), (2.13), (2.14).

Theorem 2.6. Suppose that \(A = \partial \varphi, A^{-1} 0 \neq \emptyset \) and (1.4), (1.6) hold, therefore (1.1), (1.2) has a strong solution \(u \in C(0, \infty; H) \cap W_{loc}^{1, 2} (\delta \cup \infty; H), \forall \delta \in]0, \infty[\). Then,
\[
\lim_{t \to a} \varphi (u(t)) = \varphi (a), \quad a \in]0, \infty[\quad (2.16)
\]

Proof. Multiplying (1.1) by \(du/dt (t) \) and using Lemma 2.1 in [1, p. 189] we obtain:
\[
\left| \frac{du}{dt} (t) \right|^2 + \frac{d}{dt} \varphi (u(t)) = \left(f(t), \frac{du}{dt} (t) \right), \quad \forall t > 0.
\]

Hence
\[
\left| \frac{du}{dt} (t) \right|^2 + \frac{d}{dt} \varphi (u(t)) \leq \frac{1}{2} |f(t)|^2, \quad \forall t > 0 \quad (2.18)
\]

which implies that the function
\[
t \to \varphi (u(t)) - 2^{-1} \int_{0}^{t} |f(s)|^2 ds
\]

is monotone nonincreasing over \(]0, \infty[\). Moreover, since \(A^{-1} 0 \neq \emptyset \), we have
\[
\varphi (t) \geq \varphi (p), \quad p \in A^{-1} 0, \quad \forall t \in H.
\]

Thus, (2.19) has a finite limit, as \(t \to \infty \), thereby (2.17) is satisfied. By (1.6) and (2.18) one gets (2.16).

Remark 2.3. Under the hypotheses of Theorem 2.6 \(u(t) \) can be unbounded, as \(t \to \infty \). For instance,
if we take:

\[H = (-\infty, \infty), \quad A \equiv 0 \quad \text{and} \quad f(t) = (1 + t)^{-1}, \]

then the assertion follows.

In addition to the hypotheses of Theorem 2.6 let us assume that \(u(t) \) is bounded on \([0, \infty[\). For example, this is true if (1.5) holds (cf. Lemma 2.1) or if

\[
\lim_{t \to \infty} \varphi(u) = \infty.
\]

(2.20)

In this case, since

\[
\varphi(u(t)) \leq \varphi(v) + (h(t), u(t) - v), \quad \text{for every} \quad v \in D(\varphi)
\]

and

\[
h(t) \in L^2(\delta, \infty; H), \quad h(t) \in \partial \varphi(u(t)), \quad \text{a.e.} \quad t > 0,
\]

it follows that

\[
\varphi_u = \varphi(u_u) \leq \varphi(v), \quad \forall v \in D(\varphi), \quad u_u \in \omega_u.
\]

Hence, in this situation we have:

\[
\varphi_u = \lim_{t \to \infty} \varphi(u(t)) = \inf \{ \varphi(u); u \in H \}.
\]

Next, we shall apply our preceding results to some second order differential equations. Suppose that we are given two real Hilbert spaces \(V \) and \(H \) such that \(V \subset H \) and the inclusion mapping of \(V \) into \(H \) is continuous and densely defined. We are interested in the problem:

\[
\frac{d^2 u}{dt^2}(t) + A(t)u(t) + M(t) \frac{du}{dt}(t) \geq f(t), \quad \text{a.e.} \quad t > 0
\]

(2.21)

\[
u(0) = u_0, \quad \frac{du}{dt}(0) = v_0.
\]

(2.22)

where

\[A(t) : V \to V' \]

is linear, continuous, symmetric and coercive, while \(M(t) \) is a maximal monotone set in \(V \times V', V' \) being the dual space of \(V \). Let \(X = V \times H \) and let \(K \subset X \times X \) be defined by

\[
D(K) = \{ [u, v] \in X; (A(t)u + M(t)v) \cap H \neq \emptyset \},
\]

\[K[u, v] = [-v, (A(t)u + M(t)v) \cap H], \quad \text{for every} \quad [u, v] \in D(K). \]

Then \(K \) is a maximal monotone set relating to an adequate scalar product of \(X \) (see e.g. [1, p. 268]).

It is well known that if \([u_0, v_0] \in D(K) \) and \(f \in L^1_{loc}(0, \infty; H) \) then (2.21), (2.22) has a unique strong solution \(u \in W_{loc}^{1,1}(0, \infty; V) \cap W_2^{1,2}(0, \infty; H) \), or equivalently the following Cauchy problem:

\[
\frac{d^2 U}{dt^2}(t) + KU(t) \geq F(t), \quad \text{a.e.} \quad t > 0,
\]

(2.23)

\[U(0) = [u_0, v_0].
\]

(2.24)

where \(F(t) = [0, f(t)] \), admits \(U(t) = [u(t), du/dt(t)] \) as solution. It is easy to see that if we suppose \([u_0, v_0] \in D(K)\) and \(f \in L^1_{loc}(0, \infty; H) \) then there exists a unique function

\[u \in C([0, \infty[, V) \cap C^1([0, \infty[, H) \]

such that \([u, du/dt] \) is an integral solution of (2.23), (2.24) on positive half-axis. We shall say that this function \(u \) is an integral solution of (2.21), (2.22).

Corollary 2.1. Suppose that \(A_0, M \) satisfy the precedent assumptions, \([u_0, v_0] \in D(K)\), \(f \in L^1(0, \infty; H) \) and \(0 \in D(M) \). Then

\[
u(t) \text{ is bounded in } V \text{ on } [0, \infty[, \]

(2.25)

\[
deu \text{ is bounded in } H \text{ on } [0, \infty[, \]

(2.26)

\[\sigma(t) \text{ converges weakly in } V \]

(2.27)

\[\text{to an element } p \in C = -A_0^{-1} M(0), \text{ as } t \to \infty, \]

(2.28)

where

\[\sigma(t) = t^{-1} \int_0^t u(s) \, ds. \]

(2.29)

3. **Examples**

Let \(\Omega \) be an open bounded set of \(\mathbb{R}^n \), \(\mathbb{R}^1 = (-\infty, +\infty) \) and \(\Gamma \) denotes its boundary which is smooth enough. Let \(\beta \) be a maximal monotone graph in \(\mathbb{R}^1 \times \mathbb{R}^1 \) such that \(0 \in D(\beta) \). Then, there exists a lower-semicontinuous convex function \(f : \mathbb{R}^1 \to [-\infty, \infty] \) such that \(\beta \circ \partial f \).

Example 1.

\[u(t, x) - \Delta u(t, x) + \beta(u(t, x)) \geq f(t, x), \quad t > 0, \quad \text{a.e.} \quad x \in \Omega \]

(3.1)

\[u(t, x) = 0, \quad x \in \Gamma, \quad t > 0 \]

(3.2)

\[u(0, x) = u_0(x), \quad \text{a.e.} \quad x \in \Omega \]

(3.3)
The function \(\varphi: H = L^2(\Omega) \to]-\infty, \infty[\).

\[
\varphi(u) = \begin{cases}
2^{-1} \int_\Omega |\nabla u|^2 \, dx + \int_\Omega f(u) \, dx, & u \in H^1_0(\Omega) \\
+ \infty & \text{otherwise},
\end{cases}
\]

is lower-semicontinuous, convex and \(\varphi \neq +\infty \),

\[
\partial \varphi(u) = \{ v \in L^2(\Omega) : (x) \in f(u(x)) - \Delta u(x), \text{ a.e. } x \in \Omega \}.
\]

Assuming that

\[
u_0 \in D(\varphi)' = \{ u \in L^2(\Omega) : u(x) \in D(\varphi)' \}, \text{ a.e. } x \in \Omega \tag{3.4}
\]

\[
f(t, x) \in L^2(0, \infty ; L^2(\Omega)) \tag{3.5}
\]

and applying Theorem 2.3, we deduce that \(u(t, x) \), the integral solution of (3.1), (3.2), (3.3), converges weakly in \(L^2(\Omega) \), as \(t \to \infty \), to \(u_\infty(x) \in H^1_0(\Omega) \cap H^2(\Omega) \), where \(u_\infty(x) \) is the unique solution of the problem:

\[
\begin{aligned}
- \Delta u_\infty(x) + f(u_\infty(x)) &\geq 0, \text{ a.e. } x \in \Omega \\
u_\infty(x) &= 0, & x \in \Gamma.
\end{aligned}
\]

Suppose now that (3.4) holds and

\[
f(t, x) \in L^2(0, \infty ; L^2(\Omega)). \tag{3.6}
\]

From Theorem (2.6) and Remark 2.3 we can write that

\[
\lim_{t \to \infty} \varphi(u(t, \cdot)) = \inf \{ \varphi(u) : u \in L^2(\Omega) \}. \tag{3.7}
\]

By (3.7), taking into account that \(j \) is bounded from below by an affine function, it follows that \(u(t, \cdot), t > 0 \) is bounded in \(H^1_0(\Omega) \), so it is relatively compact in \(L^2(\Omega) \). But (3.7) implies \(u_\infty = \{ u_\infty \} \). We conclude that if (3.4), (3.6) are satisfied then \(u(t, \cdot) \) converges strongly in \(L^2(\Omega) \) and weakly in \(H^1_0(\Omega) \) to \(u_\infty \), as \(t \to \infty \).

Example 2.

\[
u_0(t, x) = \Delta u(t, x) + f(u(t, x)) \geq f(t, x), t > 0, \text{ a.e. } x \in \Omega \tag{3.8}
\]

\[
u(t, x) = 0, \quad u(0, x) = u_0(x), t \geq 0 \tag{3.9}
\]

\[
u(0, x) = u_0(x), \quad u(0, x) = v_0(x), \text{ a.e. } x \in \Omega. \tag{3.10}
\]

According to Corollary 2.1, we shall choose

\[
V = H^1_0(\Omega), \quad H = L^2(\Omega), \quad A_0 = -\Delta, \quad \text{i.e.}
\]

\[
(\omega, u)_H = \int_\Omega \nabla u \cdot \nabla v \, dx, \quad \text{for all } [u, v] \in H^1_0(\Omega)^2
\]

and \(M = \partial \varphi \), where

\[
\omega(u) = \int_\Omega f(u) \, dx, \quad u \in H^1_0(\Omega).
\]

We remark that \(0 \in D(\varphi) \), because \(0 \in D(f) \). Hence, assuming that (3.5) is satisfied it follows (2.25)-(2.28).

Moreover,

\[
\sigma(t, \cdot) = t^{-1} \int_0^t u(s, \cdot) \, ds
\]

converges strongly in \(L^2(\Omega) \) to \(u_\infty \in \Delta^{-1} \mathcal{R}(0) \).

For details concerning these examples, see e.g. [1].

REFERENCES