where \mathcal{A} denotes the boundary of Ω.

Consider the following free boundary problem

$$
\begin{aligned}
\Delta u &= f, & & \text{in } \Omega, \\
\frac{\partial u}{\partial n} &= 0, & & \text{on } \partial \Omega,
\end{aligned}
$$

where Δ is the Laplacian operator and u is the unknown function in \mathbb{R}. Physical equations (1.1) - (1.2) in the configuration of a vibrating plate (case $\gamma = 2$ or rigid case $\gamma = 1$) cannot be the solutions to the above variational problem

Problem (1.1) - (1.2) may be written in the following variational form

$$
\int_{\Omega} \left(\frac{1}{2} \frac{\partial^2 u}{\partial x^2} + \frac{1}{2} \frac{\partial^2 u}{\partial y^2} - gu \right) \varphi \, dx \, dy = 0
$$

where

$$
\int_{\Omega} \varphi \, dx \, dy = 1
$$

and u denotes the position function of x and y. Variation inequality (1.4) leads to the problem (1.3), a unique solution (1.5).

Assume that there exist certain bounded spaces $L^p(\Omega)$, $L^q(\Omega)$ for $p, q > 1$ and certain continuous operators T, S, R, F, G, H, B such that T, S, and R are given by

$$
\begin{aligned}
T&: L^p(\Omega) \to L^q(\Omega), & & T_1 \to T_2, \\
S&: L^p(\Omega) \to L^q(\Omega), & & S_1 \to S_2, \\
R&: L^p(\Omega) \to L^q(\Omega), & & R_1 \to R_2, \\
F&: L^p(\Omega) \to L^q(\Omega), & & F_1 \to F_2, \\
G&: L^p(\Omega) \to L^q(\Omega), & & G_1 \to G_2, \\
B&: L^p(\Omega) \to L^q(\Omega), & & B_1 \to B_2,
\end{aligned}
$$

A unique solution

$$
\begin{aligned}
\int_{\Omega} \left(\frac{1}{2} \frac{\partial^2 u}{\partial x^2} + \frac{1}{2} \frac{\partial^2 u}{\partial y^2} - gu \right) \varphi \, dx \, dy &= 0, \\
\frac{\partial u}{\partial n} &= 0, & & \text{on } \partial \Omega,
\end{aligned}
$$

EXTRAS

TOMUL XXXV (Serie nouă), Fasc. 2

1989
OPTIMAL CONTROL OF BIHARMONIC VARIATIONAL INEQUALITIES

BY

ZHENG-XU HE and GHEORGHE MOROȘANU

1. Introduction. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n (1 \leq n \leq 3) \) with smooth boundary. Let \(\psi \in H^2(\Omega) \), \(f \in H^{-2}(\Omega) \), \(\psi_1 \in H^{3/2}(\partial \Omega) \) and \(\psi_2 \in H^{1/2}(\partial \Omega) \) with \(\psi_1 > \psi \) on \(\partial \Omega \).

where \(\partial \Omega \) denotes the boundary of \(\Omega \).

Consider the following free boundary problem

\[
\begin{align*}
\Delta^2 y - f &> 0, \\
y &\geq \psi, \\
\Delta y - f &\geq 0, \quad (y - \psi)(\Delta^2 y - f) = 0, \\
y &\geq \psi_1, \\
\partial y / \partial n &\geq \psi_2, \\
\partial y / \partial n &\geq \psi_2,
\end{align*}
\]

where \(\Delta \) is the biharmonic operator and \(y \) is the unknown function : \(\Omega \to \mathbb{R} \).

Physically equations (1.1) -- (1.3) describe the configuration of an elastic plate (case \(n = 2 \)) or beam (case \(n = 1 \)) constrained to lie above the obstacle \(y = \psi \).

Problem (1.1) -- (1.3) may be written in the following variational form (see [7] for the case \(\psi = 0 \))

\[
\begin{align*}
y \in K(\psi_1, \psi_2), \\
\int_{\Omega} \Delta y \cdot \Delta (z - y) dx &\geq (f, z - y), \\
(\forall) z &\in K(\psi_1, \psi_2),
\end{align*}
\]

where

\[
K(\psi_1, \psi_2) = \{ z \in H^s(\Omega) : z \geq \psi, \partial z = \psi_1, \partial z / \partial n = \psi_2 \},
\]

and \((\cdot, \cdot) \) denotes the pairing between \(H^s(\Omega) \) and \(H^s_0(\Omega) \) (for \(s > 0 \)). Variational inequality (1.4) (and hence problem (1.1) -- (1.3)) has a unique solution (cf. [7]).

Assume that there exist real Hilbert spaces \(U_i (i = 0, 1, 2) \) and linear continuous operators \(B_0 : U_0 \to H^{-4}(\Omega) \), \(B_1 : U_1 \to H^{3/2}(\partial \Omega) \) and \(B_2 : U_2 \to H^{1/2}(\partial \Omega) \) such that \(f, \psi_1 \) and \(\psi_2 \) are given by

\[
\begin{align*}
f &= B_0 u_0 + f_0, \\
\psi_1 &= B_1 u_1 + w_1, \\
\psi_2 &= B_2 u_2 + w_2,
\end{align*}
\]

where

\[
u_0 \in U_0, \\
u_1 \in U_1, \\
u_2 \in U_2.
\]
respectively, with \(f_0 \in H^{-2}(\Omega) \), \(w_1 \in H^{1/2}(\partial \Omega) \), \(w_2 \in H^{3/2}(\partial \Omega) \). Let also be given functionals \(g : H^2(\Omega) \to \mathbb{R} \) and \(h_i : U_i \to \mathbb{R} = [-\infty, +\infty] \) (\(i = 0, 1, 2 \)) such that
\[
B_i u_i + w_i > \psi, \quad \text{on } \partial \Omega, \quad (\forall) u_i \in D(h_i).
\]

We will be concerned with the following optimal control problem
\[
(P) \text{ Minimize } g(y) + h_0(u_0) + h_1(u_1) + h_2(u_2) \text{ over all } y \in H^2(\Omega), \ u_i \in U_i \ (i = 0, 1, 2) \text{ subject to } (1.1)-(1.3) \ (\text{or } (1.4)) \text{ with } (1.6)-(1.8).
\]

In the last few years many results have been derived for control problems governed by second order state equations ([1-6], [10-12], [17-21]), but less efforts have been made to solve control problems governed by higher order state equations ([7], [8], [14], [18]). It is the aim of this paper to continue the study of such problems.

The contents of the paper is the following. In Section 2 we give a simple result concerning the existence of optimal controls in problem \((P) \). In Section 3 we derive the optimality conditions. At last, in Section 4, we study in detail a concrete problem connected with the elastic beam with obstacle for which we try to find the exact form of the optimal control.

The notations in this paper are quite usual. So \(H^s(\Omega), H^s_0(\Omega), H^{-s}(\Omega) \) and \(H^s(\partial \Omega) \ (s > 0) \) denote the Sobolev spaces of \(L^2 \)-type (see, e.g., Lions-Magenes [16]). For any convex function \(h \) from some real Hilbert space \(H \) into \(\mathbb{R} \), \(\partial h \) denotes its subdifferential and \(D(h) \) its effective domain. The scalar products in the spaces \(U_i \) are all denoted by \(< .., > \), and the corresponding Hilbertian norms by \(||..|| \). Finally, all relations concerning functions defined on \(\Omega \) are understood in distributional sense.

2. Existence of optimal controls. Let us make the following assumptions:

\begin{itemize}
 \item [(H1)] One of the following conditions holds:
 \begin{enumerate}
 \item \(g : H^2(\Omega) \to \mathbb{R} \) is weakly lower semicontinuous (LSC);
 \item \(g : H^2(\Omega) \to \mathbb{R} \) is LSC and \(B_0, B_1 \) and \(B_2 \) are all compact operators.
 \end{enumerate}
 \item [(H2)] \(h_i : U_i \to \mathbb{R} \) (\(i = 0, 1, 2 \)) are all proper, convex and LSC.
\end{itemize}

Let \(u_i \in D(h_i) \ (i = 0, 1, 2) \). By (1.9) there exists a unique solution \(y = y(u_0, u_1, u_2) \) to (1.4). Then problem \((P) \) may be written as
\[
(P') \text{ Minimize } J(u_0, u_1, u_2) = g(y(u_0, u_1, u_2)) + \sum_{i=0}^{2} h_i(u_i),
\]
over \(u_i \in D(h_i) \ (i = 0, 1, 2) \).

Now, we are able to state the following

Theorem 2.1. Assume that (1.9), (H1) and (H2) hold. If in addition the following coercivity condition is satisfied
\[
\lim J(u_0, u_1, u_2) = +\infty \text{ for } \sum_{i=0}^{2} ||u_i|| \to \infty
\]
then there exists at least one optimal control for problem \((P) \).

Proof. By (2.2) the theorem reduces to proving that
\[
J : U_0 \times U_1 \times U_2 \to \mathbb{R} \text{ is weakly continuous.}
\]
If condition (i) in \((H_4)\) holds, then as the mapping \((u_0, u_1, u_2) \rightarrow y(u_0, u_1, u_2)\) is obviously weakly continuous from \(U_0 \times U_1 \times U_2\) to \(H^2(\Omega)\) (see also \((H_2)\)) we deduce \((2.3)\). If instead condition (ii) in \((H_2)\) is verified, then we may show that the mapping \((u_0, u_1, u_2) \rightarrow y(u_0, u_1, u_2)\) is continuous from \(U_0 \times U_1 \times U_2\) with the weak topology to \(H^2(\Omega)\) with the strong topology, and hence \((2.3)\) follows. Q.E.D.

Corollary 2.2. Let \((1.9), (H_1)\) and \((H_2)\) hold. Assume in addition that for each \(i = 0, 1, 2\) the set \(D(h_i)\) is bounded in \(U_i\). Then problem \((P)\) admits at least one optimal control.

Proof. One applies Theorem 2.1. Q.E.D.

3. Necessary optimality conditions.

We will consider only the distributed control problem. The boundary control case may be treated in rather the same way (cf. also [4] and [15]).

In the distributed control case, problem \((P)\) may be reformulated as:

\[(Q) \quad \text{Minimize } G(y, u) = g(y) + h(u) \text{ over all } y \in H^2(\Omega), u \in U, \text{ subject to}
\]

\[
(3.1) \quad y \geq \psi, \quad \Delta^2 y - (Bu + f_o) \geq 0, \quad (y - \psi)(\Delta^2 y - Bu - f_o) = 0, \text{ in } \Omega
\]

\[
(3.2) \quad y = v_1, \text{ on } \partial \Omega,
\]

\[
(3.3) \quad \partial y/\partial n = v_2, \text{ on } \partial \Omega,
\]

where \(U\) is a real Hilbert space, \(h : U \rightarrow \overline{R}, B : U \rightarrow H^{-2}(\Omega)\) is a linear continuous operator, \(f_o \in H^{-2}(\Omega), v_1 \in H^{1/2}(\partial \Omega)\) and \(v_2 \in H^{1/2}(\partial \Omega)\) are fixed and

\[
(3.4) \quad \psi \geq \psi, \text{ on } \partial \Omega.
\]

Let us suppose that

\[(H_3) \quad g : H^2(\Omega) \rightarrow \overline{R} \text{ is Fréchet differentiable.}
\]

Then \((H_3)\) is equivalent to

\[(H_1) \quad \text{either } g \text{ is weakly LSC on } H^2(\Omega) \text{ or } B : U \rightarrow H^{-2}(\Omega) \text{ is compact and } (H_2) \text{ reduces to}
\]

\[(H_2) \quad h : U \rightarrow \overline{R} \text{ is proper, convex and LSC.}
\]

Clearly, for any \(u \in U\), there exists a unique solution \(y = y_u \in H^2(\Omega)\) to problem \((3.1)-(3.3)\).

The following theorem is the main result of the paper. It is the analogue of [4, Theorem 3.3, p. 83] which is related to optimal control problems governed by second order elliptic variational inequalities.

Theorem 3.1. Assume that \((H_1), (H_2)\) and \((H_3)\) hold. Let \((y^*, u^*)\) be an optimal pair for problem \((Q)\). Then, there exists \(p \in H^2(\Omega)\) such that

\[
(3.5) \quad \Delta^2 p + \nabla g(y^*) = 0, \text{ in } \{y^* > \psi\},
\]

\[
(3.6) \quad p(\Delta^2 y^* - Bu^* - f_o) = 0, \text{ in } \Omega,
\]

\[
(3.7) \quad B^* p \in \partial h(u^*).
\]

Remark 3.1. In \((3.5)\) and in the following \(\nabla g(y^*)\) is considered as an element in \(H^{-2}(\Omega)\) (the dual of \(H^2_0(\Omega)\)) which is in fact the restriction to \(H^2_0(\Omega)\) of \(\nabla g(y^*) \in H^2(\Omega)^*\) (the dual of \(H^2(\Omega)\)).
Remark 3.2. In (3.7), \(U^* \) is identified with \(U \) and hence the adjoint \(B^* \) of \(B \) is a linear continuous operator from \(H_0^2(\Omega) = H^{-2}(\Omega)^* \) to \(U = U^* \).

Proof of Theorem 3.1. We may assume that \(D(h) \) is bounded. Otherwise \(h \) may be replaced by \(\hat{h} \):

\[
\hat{h}(u) = \begin{cases} h(u), & \text{if } \|u - u^*\| \leq 1, \\ +\infty, & \text{if } \|u - u^*\| > 1. \end{cases}
\]

For any \(\varepsilon > 0 \), consider the following approximating problem:

(Q\(\varepsilon \)) Minimize \(G_\varepsilon(y, u) = g(y) + h(u) + (1/2)\|u - u^*\|^2, \)

over all \(y \in H^2(\Omega), u \in U \) subject to

\[
(3.8) \quad \Delta^2 y - (1/2\varepsilon)[(y - y) - \beta^2] = Bu + f_0, \quad \text{in } \Omega,
\]

(3.2) \quad \begin{array}{l}
y = v_1, \quad \text{on } \partial \Omega, \\
\end{array}

(3.3) \quad \begin{array}{l}
\partial y/\partial n = v_2, \quad \text{on } \partial \Omega. \\
\end{array}

As \(D(h) \) is bounded, we may show as in Theorem 3.1 that there exists at least one solution \((y_\varepsilon, u_\varepsilon) \) to problem (Q\(\varepsilon \)).

Lemma 3.2. As \(\varepsilon \to 0 \) we have

\[
u_\varepsilon \to u^*, \quad \text{strongly in } U, \tag{3.9}
\]

\[
y_\varepsilon \to y^*, \quad \text{strongly in } H^2(\Omega). \tag{3.10}
\]

Proof. As \(D(h) \) is bounded, the sequence \(u_\varepsilon \) is bounded in \(U \) and hence \(y_\varepsilon \) is bounded in \(H^2(\Omega) \). So, for any sequence \(\varepsilon_m \to 0 \), there exists a subsequence \(\varepsilon_{m_k} \) such that \(u_{\varepsilon_k} = u_{\varepsilon_{m_k}} \) and \(y_{\varepsilon_k} = y_{\varepsilon_{m_k}} \) satisfy

\[
(3.11) \quad u_{\varepsilon_k} \to \hat{u}, \quad \text{weakly in } U.
\]

\[
(3.12) \quad y_{\varepsilon_k} \to \hat{y}, \quad \text{weakly in } H^2(\Omega).
\]

It is then immediate that \((\hat{y}, \hat{u}) \) satisfies Eqs. (3.1) – (3.3) and in the case in which \(B \) is compact we have

\[
y_{\varepsilon_k} \to \hat{y}, \quad \text{strongly in } H^2(\Omega).
\]

So by \((H_1)\) and \((H_3)\) (see also (3.12)) we obtain that

\[
\liminf_{k \to \infty} g(y_{\varepsilon_k}) \geq g(\hat{y}).
\]

On the other hand, by \((H_2)\) we have

\[
\liminf_{k \to \infty} h(u_{\varepsilon_k}) \geq h(\hat{u}).
\]

Hence

\[
(3.13) \quad \liminf_{k \to \infty} [g(y_{\varepsilon_k}) + h(u_{\varepsilon_k})] \geq g(y^*) + h(u^*).
\]
Now, let \(y_k \) be the solution to (3.8), (3.2), (3.3), where \(\varepsilon = \varepsilon_{m_k} \) and \(u = u^* \). Then, as \((y_k, u_k) \) is an optimal pair for \((Q_{m_k})\), we have
\[
g(y_k) + h(u) \geq g(y_k) + h(u_k) + \left(\frac{1}{2}\right)\|u_k - u^*\|^2.
\]
But
\[
y_k \to y^*, \text{ strongly in } H^2(\Omega),
\]
so by \((H_2)\) we have
\[
\lim_{k \to \infty} g(y_k) = g(y^*).
\]
Therefore
\[
\lim_{k \to \infty} \sup_{u \in U} [g(y_k) + h(u_k) + \left(\frac{1}{2}\right)\|u_k - u^*\|^2] \leq g(y^*) + h(u^*).
\]
Combining (3.13) and (3.14) we get
\[
u_k = u_{m_k} - u^*, \text{ strongly in } U.
\]
But \(\varepsilon_m \) was arbitrarily chosen, so (3.9) is true, and (3.10) follows immediately. This completes the proof of Lemma 3.2.

Now, for any \(\varepsilon > 0 \), let \(p_{\varepsilon} \in H^2_0(\Omega) \) be the solution of
\[
(3.15)
\]
\[
(3.16)
\]
Lemma 3.3. We have
\[
(3.17)
\]
Proof. Let \(v \in U \) and let \(\rho > 0 \). Set \(u_{\rho} = u + \rho v \), and let \(y_{\rho} \) be the solution of (3.8), (3.2), (3.3), where \(u = u_{\rho} \) and \(\varepsilon > 0 \) is fixed. Then we have
\[
(3.18)
\]
where \(z(v) \in H^2_0(\Omega) \) is the solution of
\[
(3.19)
\]
So we may get
\[
\rho^{-1} \left[g(y_{\rho}) - g(y_\rho) \right] = (\nabla g(y_{\rho}), z(v)), \text{ as } \rho \to 0.
\]
As \((y_{\rho}, u_{\rho}) \) is optimal for \((Q_{\rho})\) we have
\[
\rho^{-1} \left[g(y_{\rho}) - g(y_\rho) \right] + \rho^{-1} [h(u_{\rho} + \rho v) - h(u_{\rho})] + \rho^{-1} [2^{-1}\|u_{\rho} + \rho v - u^*\|^2 - 2^{-1}\|u_{\rho} - u^*\|^2] \geq 0,
\]
and hence
\[
- (\nabla g(y_{\rho}), z(v)) \leq \lim_{\rho \to 0} \rho^{-1} [h(u_{\rho} + \rho v) - h(u_{\rho})] +
\]
\[
(3.19)
\]
5 — MatematicA
where $h^p(u_{\varepsilon})$ denotes the directional derivative of h at u_{ε}. From (3.15) and (3.16) we infer that

$$-(\nabla g(y_{\varepsilon}), z(v)) = (p_{\varepsilon}, Bv) = (B^*p_{\varepsilon}, v),$$

and therefore (3.16) follows by (3.19). Thus Lemma 3.3 is proved.

Now we return to the proof of Theorem 3.1. By (H$_3$) and (3.10), we may obtain

$$(3.20) \quad \nabla g(y_{\varepsilon}) \rightharpoonup \nabla g(y^*), \text{ as } \varepsilon \searrow 0, \text{ weakly in } H^{-2}(\Omega).$$

Multiplying scalarly (3.15) by p_{ε}, it follows

$$(3.21) \quad \int_{\Omega} (\Delta p_{\varepsilon})^2dx + \frac{1}{\varepsilon} \int_{\Omega} (y_{\varepsilon} - \psi)^2p_{\varepsilon}^2dx \leq C,$$

where C is some positive constant, independent of ε.

As $(y - \psi)^2 \geq 0$, p_{ε} is bounded in $H_0^2(\Omega)$, we may extract a sequence $\varepsilon_m \to 0$ such that

$$(3.22) \quad p_{\varepsilon_m} \rightharpoonup p, \text{ weakly in } H_0^2(\Omega),$$

for some $p \in H_0^2(\Omega)$. Then, it follows by (3.15), (3.20) and (3.22) that

$$(3.23) \quad \frac{1}{\varepsilon_m} (y_{\varepsilon_m} - \psi)^-p_{\varepsilon_m} \rightharpoonup -\nabla g(y^*) - \Delta^2 p, \text{ weakly in } H^{-2}(\Omega).$$

On the other hand, we may obtain by (3.10) that (recall that $1 \leq n \leq 3$)

$$(3.24) \quad y_{\varepsilon} \to y^*, \text{ as } \varepsilon \to 0, \text{ in } C(\overline{\Omega}).$$

Thus, for any test function $\varphi \in C(\{y^* > 0\})$, there exists some $\varepsilon_0 > 0$ such that

$$(3.25) \quad \text{supp } \varphi \subset \{y^* > 0\}, \quad (\forall) \varepsilon \leq \varepsilon_0.$$

Therefore

$$\left(\frac{1}{\varepsilon} (y_{\varepsilon} - \psi)^-p_{\varepsilon} \varphi \right) = \frac{1}{\varepsilon} \int_{\Omega} (y_{\varepsilon} - \psi)^-p_{\varepsilon} \varphi dx = 0, \quad (\forall) \varepsilon \leq \varepsilon_0.$$

Letting $\varepsilon = \varepsilon_m \to 0$, we then get in virtue of (3.23) that

$$(\nabla g(y^*) - \Delta^2 p, \varphi) = 0,$$

which proves (3.5). Obviously (3.7) follows by (3.16), (3.22) and (3.9), and it remains to prove (3.6).

By (3.8), (3.9) and (3.10),

$$(3.26) \quad (2\varepsilon)^{-1} [(y_{\varepsilon} - \psi)^-]^2 \to \Delta^2 y^* - Bu^* - f_0, \text{ as } \varepsilon \searrow 0, \text{ strongly in } H^2(\Omega).$$

This together with (3.22) and the fact that $n \leq 3$ implies that

$$(3.27) \quad \frac{1}{2\varepsilon_m} [(y_{\varepsilon_m} - \psi)^-]^2p_{\varepsilon_m}^2 \to (\Delta^2 y^* - Bu^* - f_0)p^2, \text{ in } D'(\Omega).$$
On the other hand, we have, by (3.24) that

\[(y_{en} - \psi) \to 0, \text{ in } C(\Omega) \subset L^\infty(\Omega).\]

Combining this with (3.21) we may obtain

\[(3.28) \quad \varepsilon^{-1}(y_e - \psi)^p(y_e - \psi) \to 0, \text{ in } L^1(\Omega).\]

Comparing (3.27) and (3.28) we conclude that

\[(3.29) \quad (\Delta^2 y^* - Bu^* - f_0)p^2 = 0.\]

As \(\Delta^2 y^* - Bu^* - f_0 \geq 0\) is a measure in \(\Omega\) and \(p\) is a continuous function on \(\overline{\Omega}\), (3.29) is equivalent to (3.6). Q.E.D.

Remark 3.3. Using the method of [13] we may also investigate the optimality conditions for state constraint control problems governed by Eqs. (3.1) - (3.3), i.e. the problem of minimizing \(G(y, u)\) over all \(y \in H^2_0(\Omega), \quad u \in U\) subject to (3.1), (3.2), (3.3) and

\[(3.30) \quad y \in K,\]

where \(K\) is a given closed subset of \(H^2_0(\Omega)\).

4. Optimal control of the elastic beam with obstacle. Recently Barb u [5] and Y a n i r o [21] have investigated some optimal control problem for the elastic string with obstacle. We consider here a similar problem for the elastic beam:

\[\text{(Q_4) Minimize}\]

\[(4.1) \quad g(y) = -\int_0^1 y(x)dx,\]

over \(y \in H^2(0, 1), u \in U_{ad}\) subject to

\[(4.2) \quad y \geq 0, \quad y'u - u \geq 0, \quad y(y'u - u) = 0, \quad \text{in } [0, 1],\]

\[(4.3) \quad y(0) = y(1) = 1,\]

\[(4.4) \quad y'(0) = y'(1) = 0,\]

where

\[(4.5) \quad U_{ad} = \{v \in L^2(0, 1) : -N \leq v(x) \leq 0, \text{ a.e. } x \in]0, 1[, \text{ and } \int_0^1 v(x)dx = -M\}\]

with \(N > M > 0\).

Physically (4.2) - (4.3) represent the equations of an elastic beam clamped at both the ends \((x = 0\) and \(x = 1\)) and constrained to stay above the obstacle \(y = 0\). The function \(u\) represents an external force. Problem (4.2) - (4.4) may be written as the variational inequality

\[(4.6) \quad \begin{cases} y \in K, \\ \int_0^1 y''(z'' - y'')dz \geq \int_0^1 u(z - y)dz, \quad (\forall) \quad z \in K, \end{cases}\]
where

\[K = \{ z \in H^2(0, 1) : z \geq 0, z(0) = z(1) = 1, z'(0) = z'(1) = 0 \}. \]

Remark 4.1. Let \(u \in L^2(0, 1) \) and denote by \(y_u \) the corresponding solution \(\text{of (4.6) (or (4.2) \text{ - (4.4)). Then, since } y_u' - u \geq 0 \text{ (in the sense of distributions), } y_u' \text{ is a measure, i.e., } y_u'' \text{ is of bounded variation in } [0, 1] (y_u'' \in BV(0, 1)).} \)

Proposition 4.1. Let \(u \in L^2(0, 1) \) with \(u \leq 0 \text{ in } [0, 1] \). Then, the coincidence set

\[I_u = \{ x \in [0, 1] : y_u(x) = 0 \} \]

is a closed interval in \([0, 1]\) (if nonempty).

Proof. Suppose that \(I_u \) contains more than one point. Let \(x_1, x_2 \in I_u \subseteq [0, 1] \) with \(x_1 < x_2 \). Then obviously \(y_u(x_1) = y_u(x_2) = 0 \). Now, consider the function

\[\hat{z}(x) = \begin{cases} y_u(x), & \text{if } x \in [0, 1] \setminus [x_1, x_2], \\ 0, & \text{if } x \in [x_1, x_2]. \end{cases} \]

Obviously \(\hat{z} \in K \) and taking in (4.6) \(z = \hat{z} \) we get

\[\int_{x_1}^{x_2} (y_u')^2 dx \leq \int_{x_1}^{x_2} u y_u dx < 0 \]

because \(y_u \geq 0 \) and \(u \leq 0 \) in \([0, 1]\). Therefore \(y_u'=0 \) in \([x_1, x_2]\), which implies \(y_u = 0 \) in \([x_1, x_2]\). Thus we have proved that \(I_u \) is an interval. In addition, as \(y_u \) is continuous, \(I_u \) is closed.

Proposition 4.2. (Maximum principle). Let \(x_1, x_2 \in R \) with \(x_1 < x_2 \). Assume

\[y \in H^2_0(x_1, x_2) \text{ and } y'' \leq 0 \text{ in } D'(x_1, x_2). \]

Then, \(y \leq 0 \) in \([x_1, x_2]\).

Proof. As \(y'' \leq 0 \) in \(D'(x_1, x_2) \), \(y'' \) is actually a measure in \([x_1, x_2] \), i.e., \(y'' \in BV(x_1, x_2) \). Moreover \(y'' \) is concave in \([x_1, x_2]\) and

\[y'(x) = \int_{x_1}^{x} y''(t) dt, \quad y(x) = \int_{x_1}^{x} y'(t) dt, \quad x_1 \leq x \leq x_2; \]

\[\int_{x_1}^{x_2} y''(t) dt = 0, \quad \int_{x_1}^{x_2} y'(t) dt = 0. \]

So, the result follows easily (look at the graphs of \(y'', y' \) and \(y \)).

Q.E.D.

Comment 4.1. Before studying our control problem \((Q_1) \) let us make a few remarks concerning the properties of \(y_u \) in the case in which \(u \in L^2(0, 1) \) with \(u \leq 0 \). These remarks are also interesting by themselves because they show the validity of the mathematical model.

So, according to Proposition 4.1 we have to distinguish three possible cases:

- \(I_u = \emptyset \);
- \(I_u = [a, b] \), with \(a = a(u), b = b(u) \in]0, 1[\), \(a < b \);
- \(I_u = \{a\} \) with \(a = a(u) \in]0, 1[\).
Case 1. \(I_u = \emptyset \), i.e. \(y_u > 0 \) in \([0,1]\) (i.e. the beam does not touch the obstacle). In this case

\[
y''_u = u, \text{ in } [0,1],
\]

that is

\[
y_u(x) = 1 + C_1 x^3 + C_2 x^2 + \Phi(x), \quad 0 \leq x \leq 1,
\]

where the constants \(C_1 = C_1(u), C_2 = C_2(u) \) are (uniquely) determined by the conditions

\[
y_u(1) = 1, \quad y_u(1) = 0
\]

and \(\Phi = \Phi(u) \) is defined by

\[
\Phi(x) = \frac{1}{6} \int_0^x (x-t)^3 u(t) dt.
\]

We first notice that, by virtue of the maximum principle (as \(u \leq 0 \) in \([0,1]\)), \(y_u \leq 1 \) in \([0,1]\).

If \(u = 0 \) then clearly \(y_u = 1 \) in \([0,1]\). Assume that \(u \neq 0 \) (as an element of \(L^2 \)). Then obviously

\[
A := \min \{ y_u(x) ; \ 0 \leq x \leq 1 \} < 1.
\]

Moreover, we can prove the following

Proposition 4.3. Assume that \(u \in L^2(0,1), u \leq 0, u \neq 0 \) (as an element of \(L^2 \)) and \(I_u = \emptyset \). Then, the set of minimizing points of \(y_u \) is a singleton.

Proof. By virtue of the maximum principle, the set of minimizing points of \(y_u \) is a closed interval, say \([p, q] \subset [0,1]\). Assume by contradiction that \(p < q \). So \(y_u(x) = A \), for \(p \leq x \leq q \). As \(y_u \in C^2[0,1] \) we have

\[
y_u(p-0) = y_u(p-0) = y_u'(p-0) = 0,
\]

that is

\[
\begin{align*}
3C_1 p^2 + 2C_2 p + \Phi'(p) &= 0, \\
6C_1 p + 2C_2 + \Phi''(p) &= 0, \\
6C_1 + \Phi'''(p) &= 0.
\end{align*}
\]

This implies

\[
2^{-1} p^2 \Phi'''(p) - p \Phi''(p) + \Phi'(p) = 0,
\]

Let \(\Phi(x) = -\Phi(px) \). Then

\[
2^{-1} \Phi'''(1) - \Phi''(1) + \Phi'(1) = 0,
\]

with \(\Phi = \Phi(u) \) for some \(\tilde{u} \in L^2(0,1) \), \(\tilde{u} \leq 0 \).

This implies

\[
\int_0^1 x^3 \tilde{u}(x) dx = 0,
\]

that is \(\tilde{u} = 0 \Rightarrow \Phi(u) = 0 \) in \([0, p] \Rightarrow C_1 = C_2 = 0 \Rightarrow y_u = 1 \) in \([0, p] \). But this contradicts the fact that \(y_u(p) = A < 1 \). Therefore \(p = q \). Q.E.D.
Finally, let us notice that

\[(4.10)\]
\[y_u'(x) < 0, \text{ for } 0 < x < p, \quad \text{and} \]
\[(4.11)\]
\[y_u'(x) > 0, \text{ for } p < x < 1,\]

where \(p \) is the minimizing point of \(y_u \). Indeed, as \(y_u'(0) = y_u'(p) = 0 \), we have

\[y_u'(x) = \int_0^x y_u''(t) \, dt, \quad 0 \leq x \leq p \quad \text{and} \quad \int_0^p y_u''(t) \, dt = 0,
\]

which implies (4.10) (see the graphs of \(y_u'' \) and \(y_u' \)). Similarly one can obtain (4.11).

Case 2. \(I_u = [a, b] \) with \(a < b \).

Recall that \(u \in L^2(0,1) \) with \(u \leq 0 \). In addition, it is obvious that \(u \) must be \(\neq 0 \). Since

\[y_u^0 = u, \quad \text{in } [0, a] \cup [b, 1]\]

we have by an elementary computation

\[(4.12)\]
\[y_u(x) = \begin{cases} 1 + C_1 x^3 + C_2 x^2 + \Phi(x), & \text{for } 0 \leq x < a, \\ 0, & \text{for } a \leq x < b, \\ 1 + D_1(1-x)^3 + D_2(1-x)^2 + \chi(x), & \text{for } b < x \leq 1, \end{cases}
\]

with some constants \(C_i = C_i(u) \), \(D_i = D_i(u) \) \((i = 1, 2)\), where \(\Phi = \Phi(u) \) and \(\chi = \chi(u) \) are defined by (4.9) and respectively by

\[(4.13)\]
\[\chi(x) = \frac{1}{6} \int_0^x (x-t)^2 u(t) \, dt.
\]

Using an argument similar to that from Case 1 we get

\[(4.14)\]
\[y_u' < 0 \text{ in } [0, a[\quad \text{and} \]
\[(4.15)\]
\[y_u' > 0 \text{ in }]b, 1[.
\]

It is also important to notice that \(y_u'' \) is continuous except the points \(x = a \) and \(x = b \) where it has some jumps as the following simple result shows.

Proposition 4.4. Let \(u \in L^2(0,1) \); \(u \leq 0 \) and assume that \(I_u = [a,b] \) with \(a < b \).

Then

\[y_u'''(a-0) < 0 \text{ and } y_u'''(b+0) > 0.
\]

Proof. Since \(y_u \in C^2[0,1] \) we have

\[y_u(a-0) = y_u''(a-0) = 0,
\]

i.e., according to (4.12),

\[(4.16)\]
\[3C_1 a^3 + 2C_2 a + \Phi'(a) = 0,
\]

\[(4.17)\]
\[6C_1 + 2C_2 + \Phi''(a) = 0.
\]
On the other hand, as $y''_u - u \geq 0$ in $\mathcal{D}'(0,1)$, we may easily obtain that

$$y''_u(a - 0) \leq y''_u(a + 0) = 0.$$

Assume, by contradiction, that $y''_u(a - 0) = 0$, i.e.

$$6C_1 + \Phi''(a) = 0.$$

But, Eqs. (4.16), (4.17) and (4.18) lead to a contradiction (see the argument used in the proof of Proposition 4.3). So $y''_u(a - 0) < 0$ and similarly $y''_u(b + 0) > 0$.

Q.E.D.

Case 3. $I_u = \{a\}$ (with $u \in L^2$, $u \leq 0$).

Clearly, u must be $\neq 0$ and y_u has the form (4.12) (where $a = b$), because $y''_u = u$ in $]0, a[\cup]a, 1[$. Also, we may again obtain that $y'_u < 0$ in $]0, a[$ and $y'_u > 0$ in $]a, 1[$. As regards y''_u we have to distinguish two possible cases:

I) either $y''_u(a - 0) = y''_u(a + 0) \Rightarrow y_u \in H^2(0,1)$

(so $y''_u = u$, i.e. the obstacle has no effect),

II) or $y''_u(a - 0) < y''_u(a + 0)$, in which case y''_u is a measure.

Let us now return to control problem (Q_u). In order to apply the results of Sections 2 and 3 we choose $U = L^2(0,1)$ and take B to be the inclusion of $U = L^2(0,1)$ into $H^2(0,1)$ and h to be the indicator function of U_{ad} defined by (4.5) (i.e. $h(v) = 0$, for $v \in U_{ad}$, and $h(v) = +\infty$, for $v \in U \setminus U_{ad}$). Denote by (y^*, u^*) an optimal pair for problem (Q_u). Then, according to Theorem 3.1, there exists $p \in H^3(0,1)$ such that

$$p^{iv} = 1 \text{ in } \{y^* > 0\},$$
$$p = 0 \text{ in } \{(y^*)^{iv} - u^* \neq 0\},$$

$$p \equiv \partial h(u^*).$$

From (4.21) it follows that there exists some $\lambda \in \mathbb{R}$ such that (see Barbu [5])

$$u^*(x) = \begin{cases} -N, & \text{if } p(x) < \lambda, \\ 0, & \text{if } p(x) > \lambda. \end{cases}$$

In that which follows we will try to deduce the form of u^* in each of the three possible cases: $I_u \neq 0$ i.e. $y^* > 0$ in $[0, 1]$. In this case, as $p^{iv} = 1$ in $]0,1[$, we have

$$p(x) = 24^{-1} x^5 (1 - x)^2, \ 0 \leq x \leq 1,$$

with $\max p = 1/384$. It is easy to see that $\lambda \in \{0, 1/384\}$, i.e. the equation $p(x) = \lambda$ has two distinct real roots, say $x = -\delta$ and $x = 1 - \delta$. Indeed, $\lambda \leq 0 \Rightarrow u^* = 0$ in $]0,1[$, a contradiction because $0 \in U_{ad}$; on the other hand, $\lambda \geq 1/384 \Rightarrow u^* = -N$ in $]0,1[$, which is also a contradiction because $N > M$. Therefore, according to (4.22),

$$u^*(x) = \begin{cases} -N, & \text{in }]0, \delta[\cup]1 - \delta, 1[, \\ 0, & \text{in }]\delta, 1 - \delta[. \end{cases}$$
with $\delta = M/2N$ because $u^* \in U_{ad}$. Obviously, in this case y^* is symmetric, so it has the form

$$
(4.25) \quad y^*(x) = \begin{cases}
-24^{-1}Nx^4 + C_1x^3 + C_2x^2 + 1, & 0 \leq x \leq \delta \\
E_1(x-2^4\gamma)^2 + E_2, & \delta \leq x \leq 1 - \delta \\
-24^{-1}N(1-x)^4 + C_1(1-x)^3 + C_2(1-x)^2 + 1,1 - \delta \leq x \leq 1.
\end{cases}
$$

Taking into account the fact that $y^* \in C^0[0,1]$ we easily get $C_1 = N\delta/6 = M/12$, $C_3 = N\delta^3/6 - N\delta^2/4$, $E_1 = N\delta^3/6$, $E_2 = 1 - (1 - \delta)N\delta^3/24$. Obviously, $\min y^* = y^*(1/2) = E_2$. Therefore, $I_{u^*} = \emptyset$ necessarily implies $E_2 > 0$, i.e.

$$
(4.26) \quad (M/N)^2(2N - M) < 384.
$$

Now, $g(y^*)$ can be easily computed.

Case II. $I_{u^*} = [a, b]$, with $a < b$.

In order to find the form of p in $[0,1]$ we prove the following result:

Proposition 4.5. Assume $I_{u^*} = [a, b]$, $a < b$. Then $u^* = -N$ in $]a, b[$.

Proof. We first remark that

$$
(4.27) \quad \text{ess inf}_{0 < x < a} u^*(x) < 0.
$$

Indeed, assuming that $u^* = 0$ in $]0, a[$ we arrive to a contradiction because, on account of

$$
y^*(a) = (y^*)'(a) = (y^*)''(a) = 0,
$$

we obtain in this case

$$
C_1a^3 + C_2a^2 + 1 = 0, \quad 3C_1a + 2C_2 = 0, \quad 3C_1a + C_2 = 0,
$$

and these equations are contradictory. Now, assume by contradiction that the assertion of our proposition is not true, i.e.

$$
(4.28) \quad \int_a^b u^*(x)dx > -N(b-a)
$$

Clearly by changing u^* in $]a, b[$ we obtain the same state y^*. Therefore we may assume that

$$
u^*(x) = \begin{cases}
0, & \text{in }]a, a + \varepsilon[,
\end{cases}
\begin{cases}
-N, & \text{in }]a + \varepsilon, b[.
\end{cases}
$$

where

$$
\varepsilon = b-a^+(1/N) \int_a^b u^*(x)dx > 0.
$$

Now, we construct the control

$$
\tilde{u}(x) = \begin{cases}
\omega u^*(\omega x), & \text{for } 0 < x < a/\omega \\
-N, & \text{for } a/\omega < x < \eta \\
u^*(x), & \text{for } \eta < x < 1
\end{cases}
$$

where $\omega < 1$ but very close to 1 and $a/\omega < \eta < a + \varepsilon$ such that $\tilde{u}_d \in U_a$. Let \tilde{y} be the state corresponding to \tilde{u}, i.e.
\[
\bar{y}(x) = \begin{cases}
y^*(\omega x), & \text{for } 0 \leq x \leq a/\omega, \\
0, & \text{for } a/\omega \leq x \leq b, \\
y^*(x), & \text{for } b \leq x \leq 1.
\end{cases}
\]

Notice that
\[
\int_0^1 \bar{y}(x)dx > \int_0^1 y^*(x)dx,
\]
which contradicts the optimality of \((y^*, u^*)\).

Therefore (4.28) is false, i.e. \(u = -N\) in \(]a,b[\). Q.E.D.

Remark 4.2. According to (4.19), (4.20) and Proposition 4.5, we have

(4.29)
\[
p(x) = \begin{cases}
24^{-1}x^2(a-x)^2, & \text{for } 0 \leq x \leq a, \\
0, & \text{for } a \leq x \leq b, \\
24^{-1}(x-b)^2(1-x)^2, & \text{for } b \leq x \leq 1.
\end{cases}
\]

Obviously, the constant \(\lambda\) appearing in (4.22) belongs to the interval \([0, p_{\max}]\), where

\[
p_{\max} = \max \left(a^4/384, (1-b)^4/384 \right).
\]

In other words, the equation \(p(x) = \lambda\) has at least two distinct real roots (see the graph of \(p\)). We have at most two subcases which we investigate in the following:

Case II.A. \(a > 1-b\) and \((1-b)^4/384 \leq \lambda < a^4/384\) (see Figure 1).

![Fig. 1](image)

According to (4.22), \(u^*\) has the form:

(4.30)
\[
u^*(x) = \begin{cases}
-N, & \text{in }]0, \delta[\cup]a-\delta, 1[. \\
0, & \text{in }]\delta, a-\delta[.
\end{cases}
\]

Since

\[
\begin{cases}
(y^*)^iv = -N, \text{ in }]b, 1[., \\
y^*(b) = (y^*)'(b) = (y^*)''(b) = (y^*)'''(1) = 0, y^*(1) = 1
\end{cases}
\]
we necessarily obtain
\[(1 - b)^t = \frac{72}{N}, \]
and
\[y^t(x) = -(N/24)(1 - x)^t + (N/9)(1 - b)(1 - x)^3 - (N/12)(1 - b)^2(1 - x)^2 + 1, \]
\[b \leq x \leq 1. \]

Of course, a necessary condition in order that Case II. A be possible is that \(1 - b < 1/2 \), that is (see (4.31)), \(N > 1152 \).

Now, let us compute \(y^* \) in \([0, a]\). To this purpose, we consider the problem
\[y^{iv} = \begin{cases} -N, & \text{in } 0, \delta\cup a - \delta, a \\ 0, & \text{in }]\delta, a - \delta[\end{cases} \]
\[y(0) = y(a) = y'(0) = y'(a) = 0. \]

The unique solution of (4.33) is given by
\[\begin{align*}
-(N/24)x^4 + A_1x^3 + A_2x^2, & \quad 0 \leq x \leq \delta \\
B_1(x - a/2)^2 + B_2, & \quad \delta \leq x \leq a - \delta \\
-(N/24)(a - x)^4 + A_1(a - x)^3 + A_2(a - x)^2, & \quad a - \delta \leq x \leq a,
\end{align*} \]
where
\[\begin{align*}
A_1 &= N\delta/6, & A_2 &= N\delta^3/6a - N\delta^2/4; \\
B_1 &= N\delta^3/6a, & B_2 &= N\delta^3(\delta - a)/24.
\end{align*} \]

Now, consider the problem
\[\begin{cases} y^{iv} = 0 \\ y(0) = 1, \ y'(0) = y(a) = y'(a) = 0. \end{cases} \]

The solution of (4.36) is
\[y_2(x) = 1 + (2/a^2) - (3/a^3)x^3x^2, \quad 0 \leq x \leq a. \]

Then, clearly
\[y^*(x) = y_1^*(x) + y_2^*(x), \quad \text{for } 0 \leq x \leq a. \]

Moreover, as \((y^*)^\prime\) is continuous at \(x = a \), we have that \(A_2 = -3/a^2 \), i.e. (see (4.35))
\[N\delta^3/(6a) - N\delta^2/4 = -3/a^2. \]

In addition, from the condition \(u^* \equiv U_{aa} \) we get
\[a - 2\delta = 1 - M/N. \]

Eqs. (4.39) and (4.40) lead us to
\[8N\delta^4 + 10(N - M)\delta^3 + 3(N - M^2)\delta^2/N - 36 = 0. \]
which has at most one positive solution δ. More exactly, as $N > 1152$, we see that $0 < \delta < 1/4$. So, (y^*, u^*) is uniquely determined by (4.30), (4.32), (4.38) (see also (4.31), (4.40), (4.41)).

Notice that another situation is that in which $a < 1 - b$ and $a^4/384 \leq \gamma < (1 - b)^4/384$. But this is similar to Case II. A, so it is not necessary to analyse it as a separate case. Finally, we have

Case II. B. The equation $p(x) = \gamma$ has four distinct real roots, say $x = \delta, x = a - \delta, x = b + \mu$, and $x = 1 - \mu$ with $0 < \delta < a/2$ and $0 < \mu < (1 - b)/2$.

Therefore, in view of (4.22), u^* is given by

$$ u^*(x) = \begin{cases} -N, & \text{in } [0, \delta] \cup [a - \delta, b + \mu] \cup [1 - \mu, 1] \\ 0, & \text{in } \delta, \ a - \delta \cup b + \mu, \ 1 - \mu. \end{cases} $$

Then, obviously y^* has in $[0, a]$ the same form as in Case II. A (see (4.34), (4.35), (4.37) and (4.38)) and a similar computation gives y^* in $[b, 1]$. In addition, from the conditions

$$(y^*)''(a - 0) = (y^*)''(b + 0) = 0, \quad u^* \in U_{ad}, \quad p(\delta) = p(1 - \mu),$$

we get

$$N\delta^4/6a - N\delta^2/4 = -3/a^2,$$

we get

$$N\mu^3/6(1 - b) - N\mu^2/4 = -3/(1 - b)^2$$

(4.44)

$$2(\delta + \mu) - (a + 1 - b) = M/N - 1.$$

(4.45)

$$\delta(a - \delta) = \mu(1 - b - \mu).$$

Eqs. (4.39) and (4.43) can be written as

$$a^4 = 36[N \gamma^2(3 - 2\gamma)]^{-1}, \text{ where } \gamma = \delta/a,$$

(4.46)

$$1 - b)^4 = 36[N \theta^2(3 - 2\theta)]^{-1}, \text{ where } \theta = \mu/(1 - b),$$

with $\gamma, \theta \in [0.1/2]$. Now, using (4.45), (4.46) and (4.47) we get

$$(1 - \gamma)^2/(3 - 2\gamma) = (1 - \theta)^2/(3 - 2\theta)$$

which yields $\gamma = \theta$. Therefore (see (4.46) and (4.47))

(4.48)

$$a = 1 - b \text{ and } \delta = \mu.$$

that is in this case the control u^* is symmetric and hence the state y^* is symmetric too. The constants a and δ can be determined from the system (see (4.39), (4.44) and (4.48))

(4.49)

$$a - 2\delta = (N - M)/2N,$$

(4.50)

$$8N\delta^4 + 5(N - M)\delta^2 + 3(N - M)^2/(4N) \delta^3 - 36 = 0.$$

In order to compute $g(y^*)$ we need only y^* in $[0, a]$ because as y^* is symmetric, we have

$$g(y^*) = -2 \int_0^a y^*(x)dx.$$
Case III. \(I_{w^*} = \{a\} \).

There are two possibilities: either \((y^*)^{tr} - u^* = 0\) or \((y^*)^{tr} - u^* \neq 0\). Assume first that

Case III.A. \(I_{w^*} = \{a\} \) and \((y^*)^{tr} - u^* = 0\).

Consider the control problem

\((Q_o)\) Minimize (4.1) over all \(y \in H^4(0,1), u \in U_{ad} \) subject to

\[(4.51)\]
\[y^t = u, \text{ in } [0,1].\]

\[(4.3)\]
\[y(0) = y(1) = 1,\]

\[(4.4)\]
\[y'(0) = y'(1) = 0,\]

where \(U_{ad} \) is defined by (4.5). For this classical control problem the necessary conditions for optimality are

\[(4.52)\]
\[p^{yw} = 1, \text{ in } [0,1].\]

\[(4.53)\]
\[p(0) = p(1) = p'(0) = p'(1) = 0,\]

\[(4.21)\]
\[p = \epsilon h(u^*).\]

Therefore, \(p \) has the form (4.23) and the (unique) optimal pair for problem \((Q_o)\), say \((\hat{y}, \hat{u})\), can be found as in Case I above (see (4.24) and (4.25)). We may prove the following simple result.

Proposition 4.6. Let \((y^*, u^*)\) be an optimal pair for problem \((Q_o)\) such that \((y^*)^{tr} - u^* = 0\) (in view of Proposition 4.4, this is possible only in Cases I and III. A). Then \((y^*, u^*)\) coincides to the optimal pair \((\hat{y}, \hat{u})\) of \((Q_o)\).

Proof. We first notice that \((y^*, u^*)\) is an admissible pair for problem \((Q_o)\), so

\[(4.54)\]
\[g(\hat{y}) \leq g(y^*).\]

On the other hand, we obtain by the maximum principle that

\[y \geq y^*, \text{ in } [0,1],\]

where \(y \) denotes the solution of (4.2)–(4.4) with \(u = \hat{u}. \) Therefore

\[(4.55)\]
\[g(y^*) \leq g(y) \leq g(\hat{y}).\]

By (4.54) and (4.55) we see that \(g(y^*) = g(\hat{y}) \), i.e. \((y^*, u^*)\) is an optimal pair for problem \((Q_o)\). So \(y = \hat{y}, u = \hat{u} \) and hence the proof is finished.

This result says that in Case III. A the optimal pair \((y^*, u^*)\) can be found as in Case I (so in particular \(a = 1/2 \) and both \(y^* \) and \(u^* \) are symmetric). Taking into account the form of \(y^* \) (see (4.25)), we see that a necessary condition to have such an optimal pair \((y^*, u^*)\) is

\[(4.56)\]
\[(M/N)^3(2N-M) = 384.\]

Remark 4.3. Summarising we see that in Cases I and III. A the optimal pair for problem \((Q_o)\) is given by (4.24), (4.25) and a necessary condition for these cases to be possible is

\[(4.57)\]
\[(M/N)^3(2N-M) \leq 384.\]
Case IV.B. $I^{*} = \{a\} \text{ and } (y^{*})^{c} - u^{*} \neq 0$.
In this case $p \in H^{3}_{0}(0,1)$ satisfies

\begin{align}
& (4.58) \quad p^{iv} = 1, \quad \text{in } [0, a] [\cup] [a, 1]. \\
& (4.59) \quad p(a) = 0.
\end{align}

Therefore p has the form

\begin{align}
& (4.60) \quad p(x) = \begin{cases} 2^{4}x^{2}(a-x)(a_{1}-x), & 0 \leq x \leq a \\
2^{4}(1-x)^{2}(x-a_{2}), & a \leq x \leq 1
\end{cases},
\end{align}

where $a_{1}, a_{2} \in R$ such that $a^{2}(a-a_{1}) = (1-a)^{2}(a-a_{2})$.

It seems that $p'(a) = 0$ (i.e. $a_{1} = a_{2} = a$) and (u^{*}, y^{*}) can be constructed as in Case II. We failed in attempt to prove these assertions. However we can say that the unique situation in which u^{*} is symmetric is that in which $a = a_{1} = a_{2} = 1/2$, i.e. u^{*} has the form

\begin{align}
& (4.61) \quad u^{*}(x) = \begin{cases} -N, & \text{in } [0, 1/2 - x, 1/2 + x] [\cup] [1 - x, 1] \\
0, & \text{in } [x, 1/2 - x] [\cup] [1/2 + x, 1 - x]
\end{cases},
\end{align}

where

\begin{align}
& (4.62) \quad x = M/4N.
\end{align}

Remark 4.4. Notice that for certain values of M and N problem (Q) cannot admit a symmetric optimal control u^{*}. In order to show this let us take, for instance, $M = 18.10^{4}/133$ and $N = 2M = 36.10^{4}/133$. For these values of M, N cases I and III. A are impossible because inequality (4.57) is not verified. Moreover, for the same values of M, N case II. B is impossible too because system (4.49), (4.50) has some solution (a, δ) with $\delta > 1/8$, hence $a > 1/2$. Now, let us assume by contradiction that case III. B holds with $a = 1/2$ and u^{*} symmetric (i.e. u^{*} has the form (4.61) with $x = M/4N = 1/8$). Remark that for our choices of M, N system (4.39), (4.40) has the solution $\delta = 0.1, a = 0.7$. Let us consider the control given by (4.30) (with $\delta = 0.1$ and $a = 0.7$) which we denote here by u_{A}. Then, the state corresponding to u_{A} can be found in the same way as y^{*} is found in Case II. A (see (4.31), (4.32), (4.34), (4.35), (4.37), (4.38)).

Next, an elementary computation gives

\[\int_{0}^{1} y_{A}(x)dx > \int_{0}^{1} y^{*}(x)dx. \]

In other words, $g(y_{A}) < g(y^{*})$, i.e. (y^{*}, u^{*}) is not optimal. Therefore, for M, N chosen as above Case III. B with u^{*} symmetric is also impossible. It seems that the optimal pair (y^{*}, u^{*}) coincides in this example with (y_{A}, u_{A}). Any way we have proved that for these values of M, N it is impossible to have $u^{*}(x) = u^{*}(1-x), \text{a.e. } x \in [0, 1]$, as asserted.

Acknowledgement. The results of this paper were communicated the 17th of October 1986 in the seminar of Professor G. Da Prato, Scuola Normale Superiore di Pisa (Italy). The second author is very grateful to Professor G. Da Prato who kindly invited him to visit this institution.
REFERENCES

Received 4.XII.1987