V Barbu (Editor)

Differential equations and control theory
ABOUT THIS VOLUME

This Research Note contains the proceedings of an international conference on differential equations and control theory held at Iași (Romania) in August 1990. Many leading specialists in the field participated in the conference and their contributions reflect the main directions and present state of research. Contributions are focused both on theoretical aspects and applied problems.

Readership: This book will be of interest to specialists in the theory of ordinary differential equations, partial differential equations and control of distributed parameter systems, and to those with an interest in the application of differential equations to mechanics, physics, and biology.

PITMAN RESEARCH NOTES IN MATHEMATICS SERIES

The aim of this series is to disseminate important new material of a specialist nature in economic form. It ranges over the whole spectrum of mathematics and also reflects the changing momentum of dialogue between hitherto distinct areas of pure and applied parts of the discipline.

The editorial board has been chosen accordingly and will from time to time be recomposed to represent the full diversity of mathematics as covered by Mathematical Reviews.

This is a rapid means of publication for current material whose style of exposition is that of a developing subject. Work that is in most respects final and definitive, but not yet refined into a formal monograph, will also be considered for a place in the series. Normally homogeneous material is required, even if written by more than one author, thus multi-author works will be included provided that there is a strong linking theme or editorial pattern.

Proposals and manuscripts: See inside book.
Contents

Preface

S. Anita
Optimal impulse-control of population dynamics with diffusion 1

V. Barbu
The fractional step method for a nonlinear distributed control problem 7

A. Bensoussan
Some remarks on the exact controllability of Maxwell's equations 17

M. Bergounioux
A penalization method for the optimal control of a distributed elliptic problem with state constraints 30

J.F. Bonnans and D. Tiba
Optimality conditions in the control of semilinear elliptic variational inequalities 38

I. Bock
Thickness optimization in viscoelastic plate bending 44

B. Burdescu, V. Rasvan
Stability of processes in a plate stripping tower 51

O. Cârja
The minimal time function for vibrating systems 58

Catalina Davideanu
Control problems governed by a multivalued differential equation 63

G. Dinea and D. Mateescu
Friedrichs-type extension theorems for multivalued operators and some applications to mechanics 69

V. Dragan, A. Halanay
Asymptotic expansions for Liapunov and Riccati equations associated to linear control systems with two time scales and applications 89
On linear almost periodic differential systems with Favard-type conditions

On the bounded solutions of differential equations with impulses

An approximation scheme of the dynamic programming equation for a stochastic control problem with infinite horizon

On some nonlinear dynamic systems

Sobolev solutions for convex variational problems in locally convex spaces

Solving boundary value problems for systems $X'' - AX = f(t)$, without increasing the data dimension

On an optimal control problem

Sublinear vector Lyapunov functions for linear differential equations in Banach spaces

Conservation laws with the infinite domain of dependence on initial data

The orbital stability of trajectories and the estimation of the Hausdorff dimension of attractors

Obtaining and studying Beltrami type equations for axially symmetric jets in magnetogasdynamics (MGD)

Numerical-analytical solution of the water-entry problem

A class-room proof of Pontryagin's minimum principle in optimal control
I. Miyadera
C-semigroups, semigroups and n-times integrated semigroups 193

G. Morosanu
Parabolic problems associated to integrated circuits with time-dependent sources 208

T. Morozan
Affine stochastic differential equations with almost-periodic coefficients 217

D. Motreanu
Morse functions in variational and boundary value problems 222

P. Neittaanmäki
On the control of the domain in variational inequalities 228

L.I. Nicolaescu
Radial solutions of some nonlinear elliptic equations involving critical Sobolev exponents 248

V.A. Ostapenko
Generalized solutions of an initial-boundary value problem 255

O. Pastravanu, M. Voicu
Eigenvalues assignment method based on nonrecursive linear models 264

A.V. Perjan
Estimating the solutions of second-order hyperbolic equations with large parameters multiplying the inferior derivatives 273

V. Postolica
Supernormal cones and existence results for efficient points 277

R. Precup
Topological transversality and boundary problems for second-order functional differential equations 283

G.A. Rudykh, E.I. Semenov
Commutational representations and Backlund transformations for the one-dimensional nonlinear equation of evolution 289

I.A. Rus
On a theorem of Dieudonné 296

V.B. Smirnova
Global stability and oscillations of distributed parameter synchronization systems 299
E. Scheiber
An adaptive precision algorithm for the numerical solution of optimal control problems by the linearization method 306

Y. Sonntag, C. Zalinescu
Set convergences. An attempt at classification 312

Daniel Tataru
Convergence results for Hamilton–Jacobi equations with unbounded nonlinear terms 324

M. Tucsnak
Exact controllability for a hyperbolic equation with time–dependent coefficients 335

C. Ursescu
A view about some tangency concepts 342

C. Vărsan
Approximation for a Goursat problem of hyperbolic controlled stochastic differential equations 347
G. MOROSANU

Parabolic problems associated to integrated circuits with time-dependent sources

We shall be concerned with partial differential systems of the form

\[
\frac{\partial v_k}{\partial t} - \frac{\partial}{\partial x} \left(a_k(x) \frac{\partial v_k}{\partial x} \right) + g_k(x, v_k) = 0, \quad x \in (0, 1), \quad t > 0 \quad (k = 1, n),
\]

with boundary value conditions

\[(\gamma_1 v)(t) + G(\gamma_0 v)(t) \ni b(t), \quad t > 0,\]

and initial conditions

\[v(0, x) = v_0(x), \quad x \in (0, 1),\]

where \(v := \text{col}(v_1, \ldots, v_n),\) \((\gamma_0 v)(t) := \text{col}(v_1(t, 0), v_1(t, 1), \ldots, v_n(t, 0), v_n(t, 1)),\)
\[(\gamma_1 v)(t) := \text{col}(- a_1(0) \frac{\partial v_1}{\partial x}(t, 0), a_1(1) \frac{\partial v_1}{\partial x}(t, 1), \ldots, - a_n(0) \frac{\partial v_n}{\partial x}(t, 0), a_n(1) \frac{\partial v_n}{\partial x}(t, 1)).\]

Throughout this article we shall admit the following assumptions:

(A.1) \(a_k \in W^{1,\infty}(0, 1)\) and \(a_k(x) > 0\) in \([0, 1]\) \((k = 1, n).\)

(A.2) \(g_k(\cdot, p) \in L_2(0, 1)\) for every \(p \in \mathbb{R}\) and \(g_k(x, \cdot)\) is continuous and nondecreasing for a.e. \(x \in (0, 1)\) \((k = 1, n).\)

(A.3) \(G : D(G) \subset \mathbb{R}^{2n} \to \mathbb{R}^{2n}\) is a maximal monotone operator (possibly multivalued).

From a physical point of view, problem (S) + (BC) + (IC) is connected with integrated circuit theory. We mention that particular cases of this problem or similar problems were studied in recent years by a Finnish–Romanian group: V. Hara (Jyväskylä), P. Koikkalainen (Jyväskylä), A. Lehtonen (Jyväskylä), C.A. Marinov (Bucharest), G.
Morosanu (Iasi), P. Neittaanmäki (Jyväskylä).

From a theoretical point of view, similar boundary value problems for higher-order parabolic equations were studied by G. Morosanu and D. Petrosanu (see [4, p. 218–245]).

Let us first consider

The case of constant sources: \(b(t) = b_0 \) (a constant vector).

In this case we can replace \(G \) by \(\tilde{G} \) defined by \(\tilde{G}w = Gw - b_0 \), which is also maximal monotone. So we can assume in what follows \(b(t) \equiv 0 \). This situation was investigated in a previous paper [6] (see also [5], [7]). Let us recall that if \(b(t) \equiv 0 \), then our problem can be written as a Cauchy problem for an ordinary differential equation in the space \(X = L_2(0, 1) \times \ldots \times L_2(0, 1) \) (with \(n \) factors) endowed with the usual scalar product

\[
\langle u, v \rangle_X := \sum_{k=1}^{n} \langle u_k, v_k \rangle_{L_2(0, 1)} = \sum_{k=1}^{n} \int_0^1 u_k v_k \, dx.
\]

To this purpose let us define the operator \(A : D(A) \subset X \to X \) as follows:

\[
D(A) = \{ v \in X; \, v_k \in H_2(0, 1) \quad (k = 1, n) \quad \text{and} \quad -\gamma_1 \, v \in G(\gamma_0 v) \},
\]

\[
A v := - \text{col} \left(\frac{d}{dx} (a_1(x) \frac{d v_1}{dx}), \ldots, \frac{d}{dx} (a_n(x) \frac{d v_n}{dx}) \right).
\]

Consider also the operator \(B : D(B) \subset X \to X \) defined by

\[
B v := \text{col} \left(g_1(x, v_1), \ldots, g_n(x, v_n) \right),
\]

where \(D(B) \) consists of all \(v \in X \) such that \(Bv \in X \). We know from [6] that \((A.1) + (A.3) \Rightarrow A \) is maximal monotone in \(X \) and \(D(A) \) is a dense subset of \(X \).

Moreover, \((A.1) + (A.2) + (A.30) \Rightarrow D(A + B) = D(A) \) and \(A + B \) is also maximal monotone. If, in addition, \(G \) is a subdifferential then \(A + B \) is a subdifferential too.

Now, we can see that problem \((S) + (BC) + (IC) \) (with \(b(t) \equiv 0 \)) can be expressed as a Cauchy problem in \(X \):

\[
\begin{cases}
\frac{d v}{d t} + (A + B) v = 0, \quad t > 0, \\
v(0) = v_0.
\end{cases}
\]

We give (without proof) the following existence result:
Theorem 1. Assume that \((A.1), (A.2)\) and \((A.3)\) hold. Then, for every \(v_0 \in X\), problem \((CP)\) has a unique weak solution \(v \in C(R_+; X)\). If \(v_0 \in D(A)\) then \((CP)\) has a unique strong solution \(v \in W^{1,\infty}(0, T; X), \forall T > 0\), with additional properties
\[v_k \in L_\infty(0, T; H_2(0, 1))\]
and
\[v_k, \partial v_k/\partial x \in L_\infty((0, T) \times (0, 1)), \forall T > 0, k = 1, \ldots, n.\]

If, in addition \(G\) is a subdifferential then for every \(v_0 \in X\), \(v\) is strong and
\[\sqrt{t} dv/\partial t \in L_2(0, T; X), \forall T > 0.\]

For the definitions of weak and strong solutions for \((CP)\) (hence for \((S) + (BC) + (IC)\)) we refer the reader e.g. to [4, p.47].

Now, we shall concentrate our attention on

The case of time-dependent sources: \(b(t) \neq \text{const.}\)

We suppose for the time being that \(b(t) = \text{col} (b_1(t), \ldots, b_{2n}(t))\) is sufficiently regular. Following an idea from [3] we make a change of unknown functions
\[v_k = u_k + \tilde{u}_k \quad (k = 1, n),\]
where
\[\tilde{u}_k(t, x) = \alpha_k(t)x^3 + \beta_k(t)x^2 + \delta_k(t)x, \quad k = 1, \ldots, n,\]
with \(\alpha_k, \beta_k, \delta_k\) determined (uniquely) from the system
\[(\gamma_0 \tilde{u})(t) = 0, \quad (\gamma_1 \tilde{u})(t) = b(t).\]

So problem \((S) + (BC) + (IC)\) can be rewritten as
\[\frac{\partial u_k}{\partial t} - \frac{\partial}{\partial x}(a_k(x) \frac{\partial u_k}{\partial x}) + g_k(x, u_k + \tilde{u}_k(t, x)) h_k(t, x), \quad 0 < x < 1, \quad t > 0, \quad k = 1, \ldots, n,\]
\[(\gamma_1 u)(t) + G(\gamma_0 u)(t) \equiv 0, \quad t > 0.\]

\[u_k(0, x) = u_{k0}(x), \quad 0 < x < 1, \quad k = 1, \ldots, n,\]
where
\[h_k(t, x) := -\frac{\partial \bar{u}_k}{\partial t} + \frac{\partial}{\partial x} (a_k(x)) \frac{\partial u_k}{\partial x}(t, x), \]

\[u_{k0} := v_{k0}(x) - \bar{u}_k(0, x). \]

In other words, we have obtained the following time-dependent Cauchy problem:

\[
\begin{aligned}
& du/\partial t + Au + B(u + \bar{u}(t)) = h(t) \quad \text{in } X, \\
& u(0) = u_0.
\end{aligned}
\]

(5)

Theorem 2. (Existence of Strong Solutions). Assume that (A.1), (A.2) and (A.3) hold. If \(b \in W^{1,2}(0, T; \mathbb{R}^n) (T > 0) \), \(v_{0k} \in H_2(0, 1) \) \((k = 1, n) \) and \(b(0) \in \gamma_1v_0 + \mathcal{C}(\gamma_0v_0) \) then (S) + (BC) + (IC) has a unique strong solution \(v \in W^{1,\infty}(0, T; X) \) with additional properties

\[v_k \in L_\infty(0, T; H_2(0, 1)) \text{ and } v_k, \frac{\partial v_k}{\partial x} \in L_\infty((0, T) \times (0, 1)), \quad k = 1, n. \]

(6)

Sketch of proof. In a first stage, we assume that \(g_k(x, \cdot) \) are Lipschitz continuous, with Lipschitz constants independent on \(x \), and \(b \in W^{2,\infty}(0, T; \mathbb{R}^n) \). We consider the operators \(Q(t), \ t \geq 0 \) defined by \(D(Q(t)) = D(A) \) and \(Q(t)u := Au + B(u + \bar{u}(t)) - h(t). \) Of course, \(Q(t) \) are maximal monotone and there exists \(L > 0 \) such that

\[\| Q(t)u - Q(s)u \|_X \leq L \| t - s \|, \quad \forall u \in D(A), \ t, s \in [0, T]. \]

Therefore, the family \(\{Q(t)\} \) satisfies Kato's conditions (see [1]). On the other hand, we can easily see that \(u_0 = v_0 - \bar{u}(0, \cdot) \in D(A). \) Hence problem (5) has a strong solution \(u, u \in W^{1,\infty}(0, T; X) \), \(u(t) \in D(A) \) for \(t \in [0, T] \). In fact, as \(\hat{h}(t) := h(t) - B(u(t) + \bar{u}(t)) : [0, T] \to X \) is Lipschitz continuous (hence belongs to \(W^{1,1}(0, T; X) \)), we have that \(u \) is differentiable from the right on \([0, T) \) and

\[\frac{d^+ u}{dt}(t) + Au(t) + B(u(t) + \bar{u}(t)) = \hat{h}(t), \quad 0 < t < T, \]

\[u(0) = u_0. \]

Therefore

\[\frac{d^+ v}{dt}(t) + Av(t) + Bv(t) = 0, \quad 0 \leq t < T \quad \text{in } X, \]

(S)
\[(\gamma_1 v)(t) + G(\gamma_0 v)(t) = b(t), \quad 0 \leq t < T,\]

\[(IC) \quad v(0) = v_0.\]

Now, consider \(g_k\) without Lipschitz condition and replace \(g_k(x, \cdot)\) by the Yosida approximates \(g_{k\lambda}(x, \cdot) (\lambda > 0)\). From the reasoning above, problem (5), with \(g_{k\lambda}\) instead of \(g_k\), has a strong solution \(u_\lambda\), i.e. \(v_\lambda = u_\lambda + \tilde{u}\) verifies the following problem:

\[
\frac{d^+ v_\lambda}{dt} (t) + A v_\lambda(t) + B(\lambda)v_\lambda(t) = 0, \quad 0 \leq t < T \text{ in } X, \quad (7)
\]

\[
(\gamma_1 v_\lambda)(t) + G(\gamma_0 v_\lambda)(t) = b(t), \quad 0 \leq t < T, \quad (8)
\]

\[
v_\lambda(0) = v_0. \quad (9)
\]

By a standard computation we get

\[
\frac{1}{2} \frac{d^+}{dt} \| v_\lambda(t + h) - v_\lambda(t) \|_X^2 + c_0 \| \frac{\partial}{\partial x} [v_\lambda(t + h, \cdot) - v_\lambda(t, \cdot)] \|_X^2
\]

\[
\leq \| b(t + h) - b(t) \|_{\mathbb{R}^{2n}} \| (\gamma_0 v_\lambda)(t + h) - (\gamma_0 v_\lambda)(t) \|_{\mathbb{R}^{2n}},
\]

\[(0 \leq t + h < T, \quad c_0 > 0).
\]

Consequently, taking into account the inequality

\[
\| u \|_{C[0,1]} \leq \| u \|_{L_2(0,1)} + \| du/dx \|_{L_2(0,1)}
\]

we obtain

\[
\frac{d^+}{dt} \| v_\lambda(t + h) - v_\lambda(t) \|_X^2 + 2c_0 \| \frac{\partial}{\partial x} [v_\lambda(t + h, \cdot) - v_\lambda(t, \cdot)] \|_X^2
\]

\[
\leq C_1 \| v_\lambda(t + h) - v_\lambda(t) \|_X^2 + C_2 \| b(t + h) - b(t) \|_{\mathbb{R}^{2n}}
\]

\[
+ \varepsilon \| \frac{\partial}{\partial x} [v_\lambda(t + h, \cdot) - v_\lambda(t, \cdot)] \|_X^2
\]

with \(C_1, C_2 > 0\) and \(\varepsilon > 0\) small enough.

Hence

\[212\]
\[
\begin{align*}
\frac{d^+}{dt}(e^{-C_1t} \| v_\lambda(t + h) - v_\lambda(t) \|_X) & + (2c_0 - \epsilon)e^{-C_2t} \| \frac{\partial}{\partial x}[v_\lambda(t + h)
- v_\lambda(t)] \|_X \leq e^{-C_1t} C_2 \| b(t + h) - b(t) \|_2
\end{align*}
\]
\[\| v_\lambda(t + h) \|_X \leq e^{-C_1t} \| v_\lambda(t) \|_X + C_2 \int_0^t e^{-C_1r} \| b'(r) \|_2 dr, \quad 0 \leq t < T.\]

On the other hand, we can easily see that
\[\sup_{\lambda > 0} \| \frac{d}{dt} v_\lambda(0) \|_X < \infty.\]

From (11) and (12) we get
\[\{ dv_\lambda/ dt; \quad \lambda > 0 \} \text{ is bounded in } L_\infty(0, T; X)\]

and hence
\[\{ v_\lambda; \quad \lambda > 0 \} \text{ is bounded in } L_\infty(0, T; X).\]

Now denote \(g_\lambda := -Av_0 - B(\lambda)v_0 \) and remark that \(\{ g_\lambda; \quad \lambda > 0 \} \) is bounded in \(X \). Multiplying the equation
\[\frac{d}{dt} (v_\lambda - v_0) + Av_\lambda - Av_0 + B(\lambda)v_\lambda - B(\lambda)v_0 = g_\lambda\]

by \(v_\lambda - v_0 \) we can obtain an estimate similar to (10)
\[\frac{d^+}{dt}(e^{-C_3t} \| v_\lambda(t) - v_0 \|_X) + (2c_0 - \epsilon)e^{-C_4t} \| \frac{\partial}{\partial x}[v_\lambda(t, \cdot) - v_0(\cdot)] \|_X \leq \text{const}, \quad 0 \leq t < T.\]

From (13), (14) and (15) we get
\[
\left\{ \frac{\partial \nu_{k\lambda}}{\partial x} ; \lambda > 0 \right\} \text{ bounded in } L_\infty(0, T; X). \tag{16}
\]

Using (14), (16) and the formula
\[
\nu_{k\lambda}(t, x) = \int_0^1 \left(y \frac{\partial \nu_{k\lambda}}{\partial y}(t, y) + \nu_k(t, y) \right) dy - \int_0^x \frac{1}{x} \frac{\partial \nu_{k\lambda}}{\partial y}(t, y) dy,
\]
we can see that
\[
\{ \nu_{k\lambda} ; \lambda > 0 \} \text{ is bounded in } L_\infty((0, T) \times (0, 1)), \quad k = 1, n. \tag{17}
\]

This implies
\[
\{ B(\lambda)\nu_{k\lambda} ; \lambda > 0 \} \text{ is bounded in } L_2(0, T; X). \tag{18}
\]

Now, from the obvious inequality
\[
\frac{1}{2} \frac{d}{dt} \parallel \nu_{\lambda}(t) - \nu_\mu(t) \parallel X^2 \leq -\langle B(\lambda)\nu_{\lambda} - B(\mu)\nu_\mu, \nu_{\lambda} - \nu_\mu \rangle_X,
\]
we deduce that
\[
\parallel \nu_{\lambda}(t) - \nu_\mu(t) \parallel X \leq C_4(\lambda + \mu)^{1/2}, \quad 0 \leq t \leq T,
\]
and this shows that \(\nu_\lambda \) converges to some \(\nu \) in \(C([0, T]; X) \), as \(\lambda \to 0 \Rightarrow u_\lambda = \nu_\lambda - \tilde{u} \to u = \nu - \tilde{u} \) in \(C([0, T]; X) \). Next, by Lebesgue's Dominated Convergence Theorem, we can prove that \(B(\lambda)\nu_\lambda \to B\nu \), strongly in \(L_2(0, T; X) \). Now we are able to pass to the limit in the equation
\[
d\nu_\lambda/dt + A\nu_\lambda + B(\lambda)\nu_\lambda = 0,
\]
to obtain that \(\nu \) is a strong solution of \((S) + (BC) + (IC) \).

In the next step, we shall consider that \(b \in W^{1,2} \) (instead of \(b \in W^{2,\infty} \)). Taking \(\nu_0, \tilde{\nu}_0 \) such that \(\nu_0 - \tilde{\nu}(0, \cdot), \tilde{\nu}_0 - \tilde{\nu}(0, \cdot) \in D(A) \) and \(b, \tilde{b} \in W^{2,\infty} \) we can show (after some computations) that the corresponding solutions \(\nu, \tilde{\nu} \) satisfy
\[
\parallel \nu(t) - \tilde{\nu}(t) \parallel X^2 \leq \text{const.} (\parallel \nu_0 - \tilde{\nu}_0 \parallel X^2 + \int_0^t \parallel b(s) - \tilde{b}(s) \parallel L^\infty(\mathbb{R}^2 ds), \quad 0 \leq t \leq T, \tag{19}
\]

214
\[\| v(t + h) - v(t) \|_\mathcal{X}^2 \leq \text{const} (\| v(h) - v_0 \|_\mathcal{X}^2 + \int_0^t \| b(s + h) - b(s) \|_{\mathbb{R}^n} ds), \]
\[0 \leq t < t + h \leq T. \] (20)

Now, taking a sequence \(\{b_m\} \subset W^{2,\infty} \) such that \(b_m \to b \) in \(W^{1,2} \) and fixing \(v_0 \) such that \(u_0 = v_0 - \hat{u}(0, t) \in D(A) \) we can see that the corresponding sequence of strong solutions \(v_m \) converges uniformly to some \(v \) which is also a strong solution. The regularity properties (6) follow by standard resonings. Q.E.D.

Theorem 3. (Existence of Weak Solutions). If (A.1), (A.2), (A.3) hold, \(v_0 \in X \) and \(b \in L^2(0, T; \mathbb{R}^n) \), then (S) + (BC) + (IC) has a unique weak solution \(v \in C([0, T]; X) \) with \(v_k \in L^2(0, T; W^{1,2}(0, 1)) \) (\(k = 1, n \)).

Proof. Let \(\{v_0(j)\}_{j \geq 1} \subset D(A) \) be such that \(v_0(j) \to v_0 \) in \(X \) and let \(\{b(j)\}_{j \geq 1} \subset W^{1,2}(0, T; \mathbb{R}^n) \) be such that \(b(j)(0) = 0 \) and \(b(j) \to b \) in \(L^2 \). Then, the corresponding strong solutions \(v(j) \) satisfy

\[
\| v(j)(t) - v(i)(t) \|_\mathcal{X}^2 + \int_0^t \| \frac{\partial}{\partial x} [v(j)(s) - v(i)(s)] \|_\mathcal{X}^2 ds \\
\leq \text{Const} \int_0^t \| b(j)(s) - b(i)(s) \|_{\mathbb{R}^n}^2 ds, \quad 0 \leq t \leq T,
\]

which leads us to the conclusion. Q.E.D.

Theorem 4. (Asymptotic Behaviour of Solutions). If (A.1), (A.2), (A.3) hold, \(G \) is strongly monotone and \(b \in L^2(\mathbb{R}^+; \mathbb{R}^n) \), then \(A + B \) is strongly monotone, hence \((A + B)^{-1} 0\) has one element, say \(p \), and \(v(t) \to p \) in \(X \) as \(t \to \infty \), for every weak solution \(v(t) \).

Proof. An easy computation shows that \(A + B \) is indeed strongly monotone. Now for each \(j \in \mathbb{N} \) we define \(b(j) \) by

\[
b(j)(t) = \begin{cases}
 b(t), & 0 \leq t \leq j, \\
 0, & t > j,
\end{cases}
\]

and denote by \(v(j)(t), \ t \geq 0 \), the solutions corresponding to \(b(j) \) and satisfying
\[v(j)(0) = v(0). \] Note that
\[
\| v(j)(t) - v(t) \| \leq \text{const} \left(\int_j^\infty \| b(s) \|_{\mathbb{R}^{2n}}^2 ds \right)^{1/2}.
\] (21)

Since for \(t \geq j \), \(v(j)(t) \) is a solution corresponding to null sources we have \(v(j)(t) \to p \), strongly in \(X \) as \(t \to \infty \). This fact combined with (21) and with the following inequality
\[
\| v(t) - p \| \leq \| v(t) - v(j)(t) \| + \| v(j)(t) - p \|
\]
implies that \(v(t) \to p \), as \(t \to \infty \). Q.E.D.

Remark. For other details and for more general problems we refer the reader to [2] and [5].

References

3. C.A. Marinov and A. Lehtonen, Mixed type circuits with distributed and lumped parameters, Preprint 84, Univ. of Jyväskylä, Finland, 1988 (to appear in *IEEE Trans. CAS.*)

G. Morosanu
Department of Mathematics
University of Iasi
6600 Iasi
ROMANIA

216